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NOMENCLATURE

a sound speed
:1“ loading coefficients in expansion of A% , Eqn. (12)
A, 8« B8k defined in Eqn. (7a, b)

B8 number of blades

b1 camber line slope at ( 03, , Xy )

|
E c local blade chord (Fig. 2)
Ca axial projection of blade chord, a constant (Fig. 2)
> +

€=, S defined in Eqn. (11b)
c axial integrals defined in Eqn. (l4a, e)
Cm8k axial cosine integrals defined in Eqn. (14b, ¢, f, g)
d,é,e& defined in Eqn. (18)
ﬂr),(}(r) defined in Eqns. (55) and (59), respectively

14, hub/tip ratio, rH'/ ry

Hor)  Heaviside step function, 3 [ogn() ¢ 1]
L',a' indices of chordwise and spanwise loading functions, respectively
1:“5,‘ radial integrals defined in Eqn. (13)
I,,K, modified Bessel functions of order n
K ,.ex radial eigenvalue
L,n indices of chordwise and spanwise collocation points, respectively
L¢r) sectional lift per unit span
Lo tangential blade spacing, 2mr/8
m, k azimuthal and radial duct mode indices, respectively
M axial Mach number, U/a .,

Mg relative Mach number, U,/ Q_o
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NL, NN

New
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NOMENCLATURE (Cont'd.)

sectional pitching moment about mid-chord, positive clockwise

term at which i, j, k, and m series are truncated, respectively

number of chordwise and spanwise collocation points, respectively
function describing the blade camber line
perturbation pressure; also used in Section II to denote integral

shift in azimuthal mode number caused by inter-blade phase shift,
Eqn. (49b)

2
o U

nondimensional perturbation pressure, 10/'% P-
cylindrical polar coordinates (Fig. 1)
orthonormal radial eigenfunctions

local streamwise and normal coordinates (Fig. 2)

nondimensional streamwise coordinate, Eqn. (10)

sign function, *1 for X 2 0

axial sine integrals defined in Eqns. (14d, h)
uniform axial velocity

relative free-stream velocity, U 4/1+ (ﬁﬁf)z

perturbation velocity

defined in Eqn. (2c)

nondimensional axial coordinate, Eqn. (Sb)

angle of attack

(1+M * )'/‘and (1- MRz )"c , Trespectively

sectional circulation, positive counter-clockwise in Fig. 2

Dirac delta function

turning angles in blade and duct-fixed coordinates, respectively;
Eqns. (29) and (30)

helical coordinate, & - -‘E‘f—z
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NOMENCLATURE (Cont'd.)

Ca/2ry

A, i defined in Eqn. (2b)

A Bk

Mg

iy

€

defined in Eqn. (2a) for steady analysis of Section I; defined in
Eqn. (44) for unsteady analysis of Section II.

inter-blade phase shift, Eqn. (49a)
density
nondimensional radial coordinate, r/ry
cos” x
wry, /U
undisturbed flow angle, tan-,(e%f)

rotor angular velocity in steady analysis of Section I; harmonic
excitation frequency in unsteady analysis of Section II.

rotor angular velocity in unsteady analysis of Section II.

Subscripts

evaluated at hub

evaluated at tip

source coordinate on surface, e.g., X, , 0o 3 also used in
Section II to denote conditions at undisturbed state.

conditions at £ = * oo

Sggerscrigts

dimensionless quantity
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SECTION I

DIRECT LIFTING-SURFACE THEORY FOR THE
STEADY LOADING ON AN ANNULAR ROTOR

A. INTRODUCTION

Increased emphasis on reduction of the size, weight, and noise output
of axial flow turbomachinery demands improved understanding of the flow
through high-speed fan and compressor blade rows. The task of calculating
the fully nonlinear, three-dimensional, viscous flow through a blade row is a
formidable one indeed. Consequently, some approximations are required in order
to obtain a tractable model, the most familiar being the idealization of inviscid
flow through a two-dimensional cascade. However, as more detailed questions
are asked about modern blade row performance, the essentially three-dimensional

character of the flow takes on increased importance.

This section is a report on our development of a three-dimensional,
direct lifting-surface solution for the linearized, inviscid, steady flow through
a rotor. Specifically, it presents a collocation procedure for inverting the
linear integral equation which relates the local loading on the blades to a
prescribed camber line; this integral equation had been derived as part of
our effort under a previous contract, ! Although such an analysis is in principle
limited to low pressure ratios, it holds the promise of increasing our physical
understanding of the rotor flowfield at a cost well below that of numerically
solving the full nonlinear equations. The present approach alsc contains impor-
tant features not present in the two-dimensional approximation. For example,
it does include disturbances induced by the trailing vortex wakes which result
from variations in the blade circulation, and the results reported below show
this to be an important effect. The analysis and techniques developed here
should also prove useful in the study of three-dimensional, unsteady loading,
treated in the next section.
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The study of linearized, compressible three-dimensional flow through
an annular blade row began with the early work of McCune, who initially con-
sidered only the disturbance generated by the blades' thickness distribuzion.:'
Okurounmu and McCuneD extended the analysis to treat the loading problem wherein
the circulation, M(r , is specified. Initially, they modeled each blade as
a radiallv-oriented line vortex of variable spanwise strength, and were able
to obtain useful expressions for the overall static and total pressure rise, and
change in axial velocity. They later generalized this work to include finite
chord effects in a lifting-surface type analysis, with the blades modeled as a

-

; : : . : : . 6- .
distribution of these radially-oriented vortices. Again, only the design

il

problem was considered, i.e., computing the camber line required to produce a
prescribed loading; this can be reduced to an integration over the known vortex

distribution.

Just as in isolated airfoil theory, the solution to the off-design
problem, in which one seeks the loading produced by blades with a prescribed : 3
camber line, is more difficult because it requires the inversion of an integral !
: equation. McCune and Dharwadkars considered this problem in the context of :
a Prandtl lifting-line approximation, using the vortex type of analvsis presented
in Ref. 5. This work represented the extension to subsonic flow of Falcao's ’

0,11

; " ’ . . 5 : 9 1 s
earlier investigation of the incompressible case. Namba was the first to

treat the oftf-design, or direct, problem using a lifting-surface type of
analysis. He used pressure dipole singularities to represent the blade loading,

: " x 5-8 o
in contrast to the vortex representation of McCune, et al. Salaun later

g applied a pressure dipole representation to the prediction of the unsteady blade

| 3 3
5 1oading.1"l° Although not concerned with the steady problem per se, Salaun
! briefly discussed it in Appendix D of Ref. 13; however, no numerical results

were obtained for this case.

Thus, the present work, which also employs a pressure dipole approach, s
most closely parallels that of Namba; in fact, the basic flow model and the

assumptions made are almost identical. However, we found that our form of the

resulting integral equation differed from Namba's in several significant _—

respects. Accordingly, a major portion of our effort under the previous contmctl & 4




was spent in trying to reconcile these differences, or barring that, to decide
which formulation was correct. We undertook a detailed review of all the steps
leading to the formulation of the integral equation. In particular, it was

verified that our pressure monopole and dipole singularity solutions do, in

fact, satisfy the governing partial differential equation, and that our expressions
for the pressure and velocity fields associated with the entire blade row

exhibit the appropriate discontinuities across the blade surfaces and trailing
vortex wakes. It was also shown that the pressure and velocity fields satisfy
global mass and momentum balances in the duct. On this basis, it was concluded

that our formulation of the integral equation is the correct one.

This review of the linearized analysis was reported in detail in Ref. 1.
During the current contract, we have also found that our formulation of the
problem agrees with that given by Salaun. In addition, Salaun's ingenious
manipulation of the infinite series which arise provided us with the link
necessary to demonstrate the analytical equivalence between the horseshoe

3 S % 5-8
vortex representation of the blades used by McCune et al., and the pressure
dipole representation used here. This equivalence is discussed in Appendix A,

ind further supports the validity of the present integral equation.

The major effort under the current contract has been spent in developing

an efficlient means of inverting the integral equation governing the direct
lifting-surface problem. As will be seen below, the method of solution is the
second feature distinguishing the present investigation from that of .\'nmba.11
The procedure adopted here is felt to be a more direct extension of the kernel-
function methods frequently used in isolated airfoil theory. Moreover, the form
assumed for the unknown loading allows analytical expressions to be derived for
the required spanwise and chordwise integrations, thus affording greater accuracy

and improved efficiency in terms of computer time.

Sub-section B briefly reviews the basic flow model and introduces the
governing integral equation. Sub-section C describes the solution procedure,
ind numerical results and comparisons with other theories are presented and -

discussed in Sub-section D.




B. FLOW MODEL AND GOVERNING INTEGRAL EQUATION

The model assumes the blade row is housed in an infinitely long, hard-
walled annular duct of constant hub/tip ratio, h , containing a uniform sub-
sonic axial flow at Mach number ™M , as shown in Fig. 1. The flow is assumed
to be inviscid and steady in blade-fixed coordinates. In this reference frame,
the inflow has a relative velocity Ug = (U @r>*]1' , and follows the
helical undisturbed stream surfaces defined by A e %% Z = constant.

The blades are assumed to produce only small perturbations about this undis-
turbed flow, allowing the linearized boundary conditions to be applied along
these surfaces. The inviscid and small perturbation assumptions further imply
that the disturbance flowfield is irrotational, and hence isentropic. We
restrict ourselves here to considering only the case where the undisturbed
relative Mach number at the tip is subsonic. This ensures that all disturbances
will damp out far upstream of the rotor, and that far downstream only those due

to the trailing vortices will remain.

Since the problem has been linearized, the disturbance fields
produced by blade thickness and loading may be determined separately and then
superimposed. However, this separation is not as straightforward as it is for
a planar, isolated airfoil. In the thi;kness part of the rotor problem, the blades
must be cambered to achieve the condition of zero loading. This zero-loading
camber line, or '"thickness-induced camber', can be calculated as an integral over
the known source distribution once the blade thickness and the operating condi-
tions are prescribed. This point is discussed at more length in Refs. 1 and 14;
the latter contains sample calculations as well. In the idealized case of
infinitely thin blades, the present loading analysis can be applied directly
without consideration of this effect. However, for blades of finite thickness,
the analysis assumes that the thickness-induced camber has been calculated and

that the geometric camber is measured from this zero-loading camber line.

As mentioned earlier, the derivation of the governing integral equation

’ i 1 . .
appears in a previous report, and so will not be repeated here except for a

brief outline to introduce some concepts. The first step is in the manipulation
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of the linearized flow equations into a single equation for the perturbation
pressure, © . A singular solution to this equation, or Green's function, is
then found which physically represents an idealized point force/volume acting

on the fluid. This will be referred to as the pressure dipole solution.

To obtain the pressure field for the entire blade row, these singulari-

k ties are distributed along the undisturbed stream surfaces ga = ?—T;L,é=o,1...5-;,
with the dipole's strength equal to the local loading, Ay ,5,Y . On a

blade surface, S, is uniquely related to Z, , and so we set Ap(r, 5.(2,))

= 4p(r,, Z,) , and transform the chordwise integration to one over the axial

3 coordinate. The resulting expression, Eqn. (134) in Ref. 1, is:
: = '
Tall- o ) o s f ‘/.r' (r )k .
b = = a° B H(Z-2)d 2 dr
"f/szU(l'&‘)"rz“{: jz_ il iy o

Ca

P
8 f rz 2 R g (T) R giu(d.)e
47'[ﬂ‘f'rz 5 M e-® <at W Ana /U

(i

,
-
v

fH
A max(2, 2,022

: RAPRIIE R SPYIZEE BT R PR
vhere
2y wr. A3 m3 )
“LMGK(E)E,) = = [-L—T_é - A (E'E) (2b)
0] A3? m8k A4 .
: «m8 (5 il | m?
‘(" 2, E,) = —f- - Ur [Lma /—5—5 - ’\mék Aqn(E-E.)] 2¢)

and the remaining symbols are defined in the Nomenclature. It has been assumed
for convenience in Eqn. (1) that the axial projection of the blade chord, Ca

in Fig. 2, is independent of radius, though this is not essential to the analysis.,
Eqn. (1) has been shown to yield a pressure field which is continuous everywhere
except across the blades, and satisfies the same hard-wall boundary condition
imposed on the pressure dipole solution,

Ir
g ol e R e B (3
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Eqn. (3) is equivalent to requiring that the radial velocity vanish at the hub

and tip.

The above result is a superposition of duct modes which are sinusoidal
in & with a fundamental period -EéL » have a complex exponential dependence
on 2 , and whose radial variation is described by the radial eigenfunctions

R_.px and their associated eigenvalues, K.gx. The R, g, denote linear combi-
nations of Bessel functions of the first and second kind which satisfy Eqn. (3).
Their argument is actually K g, which is written here simply as g for
the sake of brevity. These functions are described at length by McCune:-J and

e &
Tyler and Sofrin.

Knowing < , the normal component of the disturbance velocity, 2n, ,

(see Fig. 2) can be obtained by integrating the corresponding momentum equation

from upstream infinity along the undisturbed helical streamline through

(r, 8,2). This result, obtained by combining Eqns. (145) and (l64) of Ref.

1
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Note that the terms in the first four lines of Eqn. (4) are identically
zero upstream of the blade row. The first two lines represent contributions
from the m™m=0, K= 0 , or plane wave mode. The next term, which involves
radial derivatives of the loading, represents the influence of the trailing
vortex pattern. For fixed ¢ , this term is independent of 2z downstream of
the blade row, which reflects the fact that the vortices are convected downstream
without attenuation along the undisturbed streamlines. This will be referred to

below as the wake term.

In the last group of terms, since we have assumed Mg <1 everyvwhere,
one can easily show that A, g, from Eqn. (2a) is always real and positive.
Hence, these terms rapidly attenuate as one moves away from the blade row, and
will be referred to below as the exponentially decaying terms. When the tip
relative Mach number becomes supersonic, certain medes will propagate undamped
down the duct. This was first noted by McCune,:'4 who was thus able to relate
the resulting acoustic radiation directly to the blade thickness distribution.
Such modes are identical in form to the propagating duct acoustic modes studied
by Tyler and Sofrin.ls which have since formed the basis for numerous investiga-

tions of turbomachinery noise.

The above expression for ¥, was shown in Ref. 1 to be continuous
across the blade surfaces, as is required physically. As part of this demon-
stration, it was found useful to integrate the exponentially decaying terms by
parts with respect to 2, . At that time, it was anticipated that this altered
form for v, , Eqn. (172) of Ref. 1, would be used as the basis for the desired
integral equation. This approach was later abandoned for several reasons, the

principal one being the added complication that 3;:P appears in the integrand

rather than A itself, and the former can be expected to exhibit singularities
at both the leading and trailing edges.

To convert Eqn. (4) into the desired integral equation, the right-hand
side is specialized to the reference blade surface, z =0 . It is also conven-
ient for machine calculations to rationalize the resulting expression so that
only real arithmetic is involved. From here on, we will work with the following

dimensionless coordinates,
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and parameters,
?, = wrp /U

One can express the aspect ratio and

axial chord projection, Ca

: e .
Aspect ratio = E a el k)
Ca Ca
3¢ 3n,
Solidity at tip = = = —
27 T

, 2
/K , 2
A = { ”9"\ - Q
v 3k X mc’5 / i
[/ Kaan ) _

Smax = (5.

in terms of which A,,,3x becomes

m3
-aa—5~dk
AmBk = SR
i '(Qﬁ

Bo,

The loading is nondimensionalized by the dyvnamic

uniform axial velocity,

"

in

(Sb)

flT = C.L / 3';_ L0;1\

a solidity parameter based on the constant

, in terms of these dimensionless groups:

=5 e
2 Wy (%)
(8¢) f
m 20 (7a)
V'/.'
| i m e 0
J | (™H)
m =0
(7e)
”m =0

pressure associated with the
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The left-hand side of Eqn. (4) is related to the blade geometry as
follows. Llet M _ «¢S,r) denote the function describing the blade camber line
4s a function of streamwise and radial coordinates (see Fig. 2), after accounting
for any thickness-induced camber as noted above. Then the blade boundary condi-
tion requires that

ﬂ‘?_‘\, ] i ——— (9)
s / = 35/

~

’J_‘(; a0) = Ug

where we have nondimensionalized "ch. and S by the local semi-chord:

§ 5y e
e » T (10)

On the reference blade 2z = Scoo ¥, where ¥ = tan'1 (@.0) is the local un-
disturbed flow angle (Fig. 2), and Ca = C Cos ¥ . It then follows from the
definitions in Eqns. (5) and (10) that § = x.

With the above definitions, the integral equation relating the blade
camber line to the unknown loading can be written as:

-

 Nex 5’2,% / /
—_—) = dz i Az (6%, )
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E 4

8 - = R_.. (o
- 1, {f A; (o, x,) dz, - 2 z Z 8« )
st mer ket (mB8)*A_a,

/dz fdr (d- ‘_‘.f 34#)’?"“ (o_)}
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To facilitate the solution procedure described next, like powers of ¢, have

been grouped together in the exponentially decaying terms. The coefficients

t 3
of @ in these terms are given by:
e 3%rs 0ty 4 3'regla?)
C » :.- C - o / - r
T Apmsi . & 8 max
2 .2 2
- rM A / 5 a 1
S'e -~ 8 —F e 2
LA \ ,3’¢,'r“> Smax | m3c Smac
- 3 T a2 /
s-,¢«3[ e « f2 9% ool 8. . & 1
T d‘,'s‘ ¢3r ¢: maxl / w8k “wm3c (11b)
E As noted in the Introduction, and discussed more extensively in Ret. 1,

this integral equation does not agree with that derived by Namba. The differences
can be traced back to the solution for the pressure field, Eqn. (1). Namba's
expression for < (Ref. 11, Eqn. (15)), quotes a different form for the

m=0, k=0 term, and also contains a '"scale factor", A (P) 1in his

terminology, which does not appear in our result,
Before proceeding to solve Eqn. (11), the singularities which can arise
in the integrand warrant some discussion. In the form in which the wake terms

first appeared, Eqn. (161) of Ref. 1, the m» and K series could be shown to

1 10
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diverge when J,=¢ and %X, < X | An analogous singularity occurs in isolated

airfoil cheory, Ref. 16, Eqn. (7-28a),; both are produced by the trailing vorticity.

1

As pointed out in Ref. 16, an integration by parts along the span will reduce
the order of the singularity so that it can be evaluated using a Cauchy princi-
pal value. In Ref. 1, this process was carried one step further by integrating
by parts twice along the span, and making use of Eqn. (3) at the limits. This
leads to the form shown above, which involves only uniformly convergent series.

The price one pays is that now the integrand involves radial derivatives orf the

-~ . :
unknown A4 ; however, this is easily handled by the present solution procedure.

1

In the last group of terms, convergence of the m and K series is

assured by the exponential decay with 1 X-X,1 . However, this mechanism is
. 3 "B, Ny
absent at X, = X , where the terms proportional to Owm pr—— (R =%.)
32

vanish identically, but the wm= 0 terms and those proportional to

Cod -:léLﬁfill-\z - X,) remain finite. If in addtion, ¢, =« , the latter
terms form divergent series. However, the only dependence on «, that remains
is through the g (x-X,), S0 that the axial integrations can be inter-
preted in the Cauchy principal value sense. Physically, this singularity arises
from the bound vorticity at ( X, , @3 ) . As pointed out in Ref. 16, if an
analytical expression for the integrals can be found, the principal value inter-
pretation is automatically satisfied. This is the case here, as shown below

and in Appendix C.
S SOLUTION PROCEDURE
In order to solve the integral equation, it is assumed that the unknown

loading can be expanded in a finite series of suitably chosen chordwise and

spanwise loading functions. Specifically, we set

7 vS 3= 52 :‘f ?" i
-~ -A, < ¢ -t

f 3 — - ¢ - SR Pt ACE N

Ap (7, ,X,) = 1 Y _.'&'}J; ..34;-“ 4 .
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and the ;L‘) y &% 1,2 . 0.NI, 4=12. NJ, are constants to be determined

by the solution. The chordwise functions are the same as those often used in

subsonic airfoil theory. They automatically satisfy the Kutta condition at the
trailing edge, 2, ~ + ! , and the ( =1 term exhibits the appropriate square
root singularity at the leading edge, Zz,= -1 . The polynomial variation in

&, allows simple treatment of the boundary condition in Egqn. (3), as well as

the radial derivatives in the wake term, as will be seen shortly.

Substitution of Eqn. (12) into Eqn. (1la) leads to radial integrations

of the form:

- btk |

f T r-.‘.’ i

G e, = : s I’ PR (13a)
J ?vl {

-

'

flize p - Tate bl b 13b)
[ % Rear (Kge ) ds v I, meo .
"’\, < = | x

the axial integrations which result are more complex; for ¢ = ¢ they are:

q‘ —_—
[1-%, ’ (14a)
1/ dz, 1 C ()
) v I X,
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.t K
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o > (1db)
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I R m3o.- 1., - Seaclxen ¢ (1)
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and for ¢ 2 2 they are:

. (14e)
A . y ‘
s ~t) @ dz, x € X
Fo e Kk T oz : <
| =)@, agniz-x,) e 4 dx, = C_ <2 (14£)
J.l
-t
" . ménr
/ : m3 o - 8, Ix-2,
[ e (L =1) @, “am(x-%,) coo —;ﬂl(x-z.)c r 5 dz
3 ¢ ° (l4g)
=t 2 C et
.
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- m3e,.1 = il B we (=%, x
£ 1) o g x-2 / .
“/ S (¢ ¢, b /93 ( . ) & adxy = ’5m6k (x)
-1
(14h)
where it is understood that aim (4L -1)@, = aem [(L-1) con™' x,] « I %o

happens that both the radial and axial integrations defined in Eqns. (13) and
(14) can be performed analytically, which is a great advantage over schemes
requiring numerical quadrature. The resulting expressions are given in Appen-
dices B and C; for the present, it is assumed that these quantities are all

Known.

Next we choose a set of collocation points [€n 5 X33, n=1,2...NN

o 1,2...NL , at which to evaluate Eqn. (11), and define

(15)

Substituting Eqns. (12) - (15) into Eqn. (11) reduces the integral equation to

the following set of simultaneous linear algebraic equations for the a—gd's
NI NI
'Z Z U,;"(d-n,ll)a.";- - bnl ns=g12.. NN 1./‘2_._)\“.
L, e (16)
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L]
! where NN x NL = NI xNJfor the svstem to be determinant. The elements ot the
.
; matrix U represent the dimensionless upwash produced at point (dn , X' by
the (¢, 4> loading function, These are given by:
2
) 87,¢. T /n“.z‘v’
V. 6oy ,%) » r s i SR
? 2 8ra-AN (e pl sd)
VM N [»] ¢ 7';-“ -
81, [+ e N A A LAY
- —— LC (2,) T, 4-‘<}ﬂ) C(X,)L 4 s !
".r‘f-n mael Ko (MS) 'q,.,‘., -
2 X '
81,0, . - ¢ ¢ 3
& ” f ( )
= p 2 a : bJ(‘Xl)-?"“d_"""'*'
87'{‘3‘\7"‘-’vc‘n) Cat
2
5'71'¢r VM K - s 4-1 .
. I(rt T A T \er \
5 a 3 X~ Z: E Rmak\ﬂ,‘l‘(b (J;)lNJk"L—<d:\~mo~.‘(-.‘a.\13_
4:‘!/3 (f‘-@r J‘n ) et Ket
;- $ - -2 C Bl
’ T 7
“(S (O:)Imak+ S \n) -MBK) 5,.5,\.ZL)‘I
(17
where NM and NK are the terms at which the m and Kk series are truncated,
3 respectively.
In writing Eqn. (17), use has been made of the following simplification
in the wake term. For each ( (‘i ), it becomes
s X Rt () F . -2 : FEE I
% -1 L ’ T =
2L L o—Fra— GGG g 10 L e |
mer kst (MB) A a8k 4
R ® & R_g. ) $-2
= -2a;(4-1) C(OV] L ——xr— - |
g (m8) A m8k
et ket m 3k ‘
| This term is seen to vanish identically tor the uniform spanwise loading tunction,

} sy , as it should, since there is no trailing vorticity in this case.
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Betfore solving the matrix equation in (16), one more feature of the
solution needs to be considered; namely, the hard-wall boundary condition in
Eqn. (3) requires that 4345 have zero spanwise derivative at the hub and tip.
This condition can be enforced automatically as follows. If Eqn. (12) is
differentiated with respect to ¢, , and the resulting expression set equal to
zero at g = & and 1, two equations involving the a;a will follow. Simultaneous
satisfaction of these two equations will, in general, depend on %, . But if it
is required that they be satisfied for all (%, €|, and for each ¢ individually,

then a; 4y., and a; wyg can be solved for uniquely:
bl

. oNT
NT -2 tf «t)0t - 4" N)
Rl gy ®* L wia,. oo i
INT -t iea 3 ey d’; (NJ =2)(1-R7")
NT -2 gaeas
(4-1)(1-4& )
ab - Z ée. &. & ;
, NI e ‘3 } (NT=1)(1-4) s

In effect, for each value of ¢ Eqn. (3) has been used to express two of the

radial coefficients in terms of the remaining ( NJ-2).

Upon substituting Eqn. (18) into (16), one obtains an altered matrix

equation of the form:

NI NT-2 |
‘Z., ’Z" Utj(d:\)zl) a’._j - bﬂl n=12... NN 1-!'2__‘,\]“. (lga)

where the elements of the modified matrix U’ are given by:

Ui ) = Ule, m) e

A

(1sb)

Ub; (0, , x,) = U‘i (0 %) * d.; U ws=r (Tns %) . Uiws (8ny %)

18 4 < NT <2

Note that the 3'.7 terms remain unaffected, since they satisfy the required con-
dition trivially. Since the number of unknowns in Eqn. (19%) has effectively
been reduced to NI x (NJ -2), the number of collocation points should be

reduced accordingly. In view of how Eqn. (18) was derived, the most logical
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approach would be to reduce the number of spanwise stations in order to get

NN xANL = NI x(NJ-2). Once having set up the matrix equation, its solution

was carried out by using Gaussian elimination with pivoting for the cases reported
here. This yields a.‘3 for all ¢ and } =1...NJ-2 ; the a yy-r and & w7

are then obtained from Eqn. (18).

The local loading at any point on the blade is calculated from Eqn.
(12). The form of that equation also allows simple analytical expressions
to be derived for the sectional lift and moment coefficients, the overall torque
and axial force coefficients, the static and total pressure rise, and the turning
produced by the rotor. The integrations involved are elementary, and so only

the results will be quoted.

The sectional lift on the blade L(o» is perpendicular to the local

undisturbed flow, and considered positive when in the +n direction (Fig. 2).

We define the lift coefficient as

L) [eco, 21" P77
C (r) = - n = z / Ap(r, X)dx
7 L=t e X Y
TT[’*(¢fd‘)zJ'/2 NS .’-' ; (40\
- 3 | e

3.'

The pitching moment M(¢r)is taken about the blade mid-chord and considered

positive when clockwise (Fig. 2). Its coefficient is defined as

% M () 1+ lpea)? A
Cote) B = — - [ i ] xap (e x)dx
7 P.= U C, ‘
r 2 % Ao
wlrs(d )l % 4 !
- - - " Y
. Rl e e T

Just as in isolated airfoil theory, we see that only the first few chordwise

load functions contribute to the net lift and moment.
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The overall torque exerted on the fluid by the complete blade

roOwW, 1
1s considered positive when counter-clockwise

as one looks downstream {(Fig. 1).
Ve define the torque coefficient as:

g 5 [ rlde
Cyp B Z 2 - 3 / p } )
T PenUe, 73 S el % b R
=3 NT ; f __g'}" F 44
= —— Q,'AH + == a
2 ;q. ¢ ' < 35) (/. 3+ )

The axial force exerted by the blade row on the fluid, F,

positive when it points upstream,

is considered
The analogous coefficient is obtained from:

~

!
s :: [ el i agr
Ce, = g - 1 R

4 -1 'g :"
Y SN g PODEer Y : (23)

The net static pressure rise across the row

can be evalauted from
Eqn. (1) at 2= ¢ » , and when normalized by the dvn

amic pressure of the axial
tlow becomes

o Pacsly o 2e .6, B O
“o b ’ 2
# 24,3_._ T TR0 -4 TBEr-RY)

The static pressure ratio is easily shown to be:

2
o REGTIER ' s
P-wo ‘ (35)
where here ¥ is the specific heat ratio.

In duct coordinates, the rise in total enthalpy, and hence total
temperature, can be related to the work done on the fluid. The total pressure
ratio can then be obtained from the isentropic relations, and the result is,
to first order in small quantities:

2
{®e > I8P, N-MCUTr) coo
—— bR
Po. 27':(.'4--_’2" Mt (26)
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The brackets on the left indicate that a circumferential average has been
taken. After allowing for differences in notation, it is readily shown that

Eqns. (24) and (26) are equivalent to those given in Ref. 5.

One can also express the circumferentially-averaged turning produced

B meea——

by the rotor in either duct or blade-fixed coordinates, &, or 44 respectively,
in terms of the above parameters. Turning is considered positive when the flow
is deflected counter-clockwise in Fig. 2. To first order, A, =-<>/U and

. . . 1
Ap =-<U,>/ Ug, where v, can be put in terms of ¥, and 4 through:

Vg = Up e Y + U aem Y

- 1.
= (1 +¢:r2) - (v, + (@ 7)) 7] (27)
»
vy, 2 - — 5 Q
fl (28)

and 4 and v, are given by Eqns. (1) and (4), respectively. The results are:

8 C.l0) (N2
4, = Ne S0 — , i
2T [1+(p, )] Ulgta)
Ay e By - 1087 TS
v ¥ RIBzC?--ﬁ.‘) Cr é(@rr)z_} (30)

It is seen that, whereas 4, depends only on conditions at the local radius,
dg is influenced by the overall torque as well. Eqn. (30) is equivalent to
that cited by McCune and Dharwadkar.s

D. NUMERICAL RESULTS AND DISCUSSION

A computer program implementing the solution procedure described above
has been developed using double precision arithmetic throughout so as to

minimize the influence of round-off error. Six cases have been run to test .
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the program over a broad range of operating conditions, as specified by the
input parameters B , S, M, t#r and N, . Table 1 summarizes the values
used for each case, along with a brief description of the specified camber
line. The first three cases were designed to test the present theory against
a two-dimensional strip theory at a high hub/tip ratio, where one would expect
strip theory to provide a reasonable approximation. A similar comparison is
drawn in Case 4 for a low hub/tip ratio, for which three-dimensional effects
are much more significant. Finally, Cases 5 and 6 provide comparisons with

: } . 7
the inverse three-dimensional theory of Okurounmu and McCune.6

TABLE 1

INPUT PARAMETERS FOR CASES 1-6

I 4= o laxial vach | 4, @[, L Sl !

Case # } 8 Ty I M 4 KE S “r | Camber Line Shape l

! 1 d

; l | Flat plate at 5° |

1 sQ 0.8 Q.5 1.0 |} 0.03 | local angle of at:ack}

| i { |

2 50 0.8 0.5 1.0 | 0.05 |10%parabolic-are '

’ ' camber ;

I !

5 ' 50 0.8 0.5 | 1.0 0.06 | Flat plate at 5° }

! I | local angle of attack

. " l ‘

4 30 0.5 0.5 1.0 | 0.0§ Flat plate at 5° i

| local angle of attack!
| 5 40 0.8 c.s 1.497 | 0.0833 | Free vortex design

{_6 40 0.8 0.5 1.497 0.0833 iZO% variation in ‘

H

In each case, NI = 5 chordwise and NJ = 5 spanwise loading functions

were used to represent 4»5 . Along the chord, NL = S collocation stations were

equally-spaced between the leading and trailing edges, x = *1; in the spanwise
direction, NN = 3 collocation stations were equally-spaced between the hub and
tip, ¢ = h, 1. The number of azimuthal modes included in the calculation,
NM, was 10 in all cases; the number of radial modes included, NK, was set at
20 or 30 depending on whether A was 0.8 or 0.5, respectively.
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39 Comparisons With 2-D Strip Theory

In Case 1, the camber line was specified to be a flat plate at
each radial station; however, a radial twist is imparted to the blades such as
to hold the local angle of attack, &5 , constant at +5 degrees. The high
hub/tip ratio in this case suggests that the loading might be reasonably well
predicted by application of a two-dimensional strip theory. However, caution
must be exercised in making such comparisons; as pointed out by McCune and
3 Dharwadkar.s two-dimensional cascade theory defines the "undisturbed" tlow
, velocity as the vector mean of the inflow and outflow velocities, whereas in
the present three-dimensional theory, it is defined to be the inflow velocity,
] Ue - Since the difference between these reference directions does not
depend on axial position, it amounts to using a different angle of attack in
the two-dimensional theory, %y, o than would be used in the three-dimensional
theory, x4, , though the physical blade geometry and inflow velocity are the
same. The difference between the two angles is proportional to the net turning

; across the row, which in turn can be related to the sectional loading:
4 )

L (31)
! x5
Kb B

2
5534? 3. ; *
4T 32 O

20 Xy ~

The lift coefficient C_ is more convenient to work with in a strip theory than
that defined in Eqn. (20). It is easily shown that to first order in the per-

3 2 ~ N
turbation scheme, the two are related by C, =€ cos ¥

Now the two-dimensional theory predicts that

= | AT K X, -
"L e ———— (~‘-1
3
’)

where the factor K; is defined as the ratio of the lift on a blade in cascade

to the lift on the same blade operated as an isolated airfoil. For flat plate

o il £ v AR

blades in incompressible flow, this factor has been expressed in closed form by

" .k . : . e
Pistolesi as a tunction of the stagger angle, J , and solidity, -f;

:
:
d
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% ¢

i o :T—K_ ~o=3wfv:(—c—>w"7+a;n)'w[n S Yaim¥] (33
o ¥k [ (£) o] E)] o

The values of stagger and solidity to be used in Eqn. (33) are those in the
corresponding incompressible flow. They are related to the values in the

original cascade flow through the Prandtl-Glauert transtformation described bv

' 13
Woolard: riae .
{
Uy = Ug - N = &,
e ( (34)
f3A
Al g
5 e e (<
\ Ly w4 X g T

Elimination of &, between Eqns. (31) and (32) then gives:

5 - 2?"(3.‘230 339
x r "qur 341 e
3 AR 3
. 0 3 e 3 B

A comparison of the strip theory predictions of Eqn. (35) for the
conditions of Case 1 with our three-dimensional calculations is given in Fig. 3.
When viewing these and subsequent results for EL it should be kept in mind that
the spanwise variation in L will be even greater, since the local dvnamic
pressure and chord both increase with radius. The agreement between the two
calculations is seen to be quite good at mid-annulus. However, whereas the
strip theory predicts a 35% increase in 15L from hub to tip, the three-dimensional
results show little variation. The corresponding changes in the circulation, /7 ,
tfrom hub to tip are +67% and 19%, respectively. Thus, significant trailing

vortex effects can be expected despite the high hub/tip ratio.

The cascade factor K  in Eqn. (33) was computed to be 0.96¢ at mid-
annulus, indicating tthat the blades are operating nearly as isolated airfoils.
This results from the low solidity of the blade row, which at this radius is
roughly two-thirds. Hence, one would expect the chordwise load distribution

to closely approximate that of an isolated flat plate. This comparison is shown

2l
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in Fig. 4, where the isolated airfoil result has been normalized by the factor

Ky 50 as to yield the same sectional lift, i.e.,

o Ry X, ¢
* > x 20 (36)
1 Uz /5 2
—2-/0_, Q /YR

The agreement is seen to be excellent.

In Case 2, the blades are assumed to have :zero angle ot attack relative
to the inflow velocity and a parabolic-arc camber line; otherwise, the input *
parameters are the same as in Case 1. The ratio of maximum camber, p ,ax . tO
the local chord length is take to be 0.10, and constant with radius. As in !
Case 1, one would expect that the high hub/tip ratio and low solidity would
cause the three-dimensional results to approach those for a two-dimensional
isolated airfoil. In the two-dimensional theory, the blade camber contributes

to the lift coefficient in the amount

C = ___—271'»(* Lnax ) o« Mnaw (37)
- 3 :u'.-Ml ~/n
’= -/ e

where K, 1is the cascade correction factor tor camber analogous to h, in the
case of the flat plate cascade. Unfortunately, while K, can be expressed in
closed form, K, cannot. But it was seen above that K, is near unityv anvway,
and so it seems reasonable to assume that tor these conditions X, 1s also., It
should also be noted that even though & 35 = 0 in this case, &,  remains finite
since there is still a finite turning. Thus, if the contributions from Eqns. (32)
and (37) are added, and Egn. (31) used to eliminate &,,. the expression that

results for C-‘-‘_ is
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The comparison between the lift coefficients predicted by Eqn. (38) and
the full three-dimensional theory for Case I is also shown in Fig. 3. Again,
good agreement is shown at mid-annulus, while the strip theory significantly
overestimates the lift near the tip, and underestimates it near the hub. Having
obtained the two-dimensional C_ from Eqn. (38), @,, can be determined from
Eqn. (31). One can then compute the corresponding chordwise load distribution,
which is a superposition of the contributions from angle of attack and camber.
The comparison between this prediction,

L2t £ e fhasnd] o
i 3 P-w Y “
and the three-dimensional results at mid-annulus is shown in Fig. 4, and again

very good agreement is obtained.

For Case 3 n,, and hence the solidity all across the annulus, has
been doubled; the other input parameters and the camber line are the same as in
Case 1. This case thus provides a better check on whether the present program
correctly predicts blade interference effects. Its predictions and those from
the strip theory, Eqn. (35), are also compared in Fig. 3. The higher solidity
is seen to result in an overall reduction in loading, the factor K, now being
only 0.63 at mid-annulus. Again very good agreement between the two theories
is exhibited at mid-annulus, with the discrepancies at other stations tollowing
the same trends seen in Cases 1 and 2. Whereas in those cases, the chordwise
load distributions closely approximated those for an isolated airfoil, in this
case one would expect the higher solidity (about 1.3) to alter the distribution
somewhat. This is illustrated in Fig. 5 where the present results are again
compared with Eqn. (36). Figs. 3 and 5 together show that the increased solidity
acts to reduce the overall lift, and to shift more of the loading forward near

the leading edge at the expense of that over the rear half of the blade.

The three cases discussed thus far were run to assess the agreement
between the present analysis and strip theory for high hub/tip ratio. The con-
ditions for Case 4 were chosen to exhibit more significant three-dimensional

effects, with the hub/tip ratio reduced to 0.5 and the number of blades reduced
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to 30; the other parameters and the camber line are the same as in Case 1. The
results and comparison with strip theory are shown in Fig. 6. Both calculations
show larger radial variations than in the previous cases, as expected. Again,
the strip theory significantly underestimates the loading at inboard stations,
and overestimates it near the tip, with good agreement at mid-annulus. However,
the percentage ervors relative to the three-dimensional predictions are much
greater in this case than in the previous cases with high hub/tip ratio. It
should be noted here that the strip theory predictions from ¢ = 0.8 outward
are identical to those for Case 1. This occurs because the two parameters 8
and rn, enter the strip theory calculation only through the cascade solidity,

and then only as the product 8n_. , which is the same in both cases.

The local chordwise load distributions at the hub, mid-annulus, and
tip radii as predicted by the three-dimensional theory are compared in Fig. 7.
Surprisingly, there is seen to be very little variation between the three. No
doubt this is due in large part to our having twisted the blades in such a way

as to maintain the geometric angle of attack constant with radius.

In all four cases discussed thus far, it is seen that the present
three-dimensional theory and a two-dimensional strip theory show good agreement
only near mid-annulus. The strip theory tends to underestimate the loading near
the hub and overestimate it near the tip, even when the hub/tip ratio is fairly
high. McCune and Dharwadkars have found the same effect in their study of the
three-dimensional lifting-line approximation. In their model, each blade was
represented by a single radially-oriented bound vortex. The strength of the
vortex was allowed to vary radially, thus generating a trailing vortex pattern.
By computing the resultant induced angle of attack at each spanwise station,
McCune and Dharwadkar were thus able to correct the sectional lift predicted
by strip theory to account for this three-dimensional effect. They concluded
that the distribution of trailing vorticity acts in such a way as to reduce

spanwise variations, which is consistent with the results presented here in

Figs. 3 and 6.
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2, Comparisons With Inverse 3-D Theory

The remaining two cases, 5 and 6, are of particular interest
because they provide comparisons between the present work and another three-

5l % - . = Qs
fting-surface theory, that of Okurounmu and McCune. In contrast
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to the off-design problem considered here, they solved the design problem, i.e.,

the determination of that camber line which will produce a specified load dis-

tribution. They presented plots of camber line slope vs. chordwise distance

which we input to our program to see if the predicted load agreed with that

specified in the design calculation. Two calculations were performed; the first

was for a free-vortex design (Case 5), in which by definition the circulation

about the blades, ™ , was constant with radius (Okurounmu and McCune refer ‘
to this as the constant-work case). In the second (Case 6), the circulation

varied by 20% from hub to tip, referenced to its radius-weighted mean over the

span. In both cases, the variation in design total pressure ratio across the

annulus was in the range 1.10 to 1.15. The camber line slopes had been normali:zed

by the overall static pressure rise coefficient across the rotors, as defined :
by Eqn. (24). This quantity was assumed to be unity in reading the curves, so b
that the present program should predict a value of Cp . of one if the two

theories are truly consistent.

For Case 5, the present program predicts a value of ‘:Ps = 10357,
which is considered very good in view of the accuracy with which the camber
line slopes could be read from the graphs. The predicted circulation, norma-

lized by the product of the constant axial velocity, U , and the tangential

blade spacing at the tip, Le, , is compared with the constant design value in
Fig. 8. Good agreement is exhibited over the entire span. The distributions
of C, are also compared, the design values having been inferred from Eqn. (29).

This quantity, rather than CL , was plotted because it reflects the true radial
variation in lift.

Fig. 9 compares the chordwise load distribution at mid-annulus as
predicted by the present analysis with the specified design distribution. The

: 2 : . /
latter was proportional to (! -x% 7 at each radial statxon.ﬁ’ Good agreement

it D



is shown over most of the chord; in principle, one should be able to reduce
the discrepancies near the leading edge by increasing the number of chordwise
collocation points. However, such a calculation was not felt warranted in

view of the inherent inaccuracy in reading the slopes, .as noted above.

Unfortunately, the results for Case 6 do not exhibit good agreement.
In this case, Cv, was predicted to be 1.54, or more than 50% too high. This is
reflected in Fig. 10, which compares the predicted spanwise variations in

and C_ with those prescribed by Okurounmu and McCune; our results are signifi-

ct

i
cantly higher than the design distributions over the entire span.

el

The disagreement in this case has not vet been explained; it is

(o]
o}

"
i b

large to be reasonably ascribed to errors in reading the camber line slopes.
seen from Table 1, the inputs for Cases 5 a2nd 6 are identical except for the
blade geometry. In Case 6, this leads to significant trailing vortex effects
not present in Case 5. The vortex representation of Refs. 6 and 7 uses an
entirely different analytical expresssion for the wake terms than the dipole
representation used here, as discussed in Appendix A. However, trailing vortex
effects were by definition excluded a priori from the free-vortex design of

-

Refs. 6 and Under these circumstances, the most logical explanation for
the good agreement in Case 5 and lack of agreement in Case 6 would be an error

in the numerical evaluation of the wake terms.

In defense of the present calculations, it should be noted that the
same number of ise loading functions was used to represent Ap in both
Cases 5 and 6; in fact, the matrix equations which were solved in each case,
Eqn. (19), were identical except for the column vector of known slopes on the
right-hand side. Thus, trailing vorticity had the same opportunity to influence
the results of Case 5 as Case 6, although in the former it correctly proved
unimportant. If an error were present in our evaluation of these terms, it is
difficult to see how it could produce significant discrepancies in one case and

not the other. It is hoped to shed further light on this question in the future.
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3. Convergence of Calculations

An investigation has been carried out on the effect of varying

the number of azimuthal and radial modes included in the calculation, NmM and

NK . The static pressure rise coefficient defined in Eqn. (24) was chosen as
a representative indicator of the overall convergence of the calculations. The
convergence of C”s with NM is shown in Fig. 11 for Cases 1l and 4. The value
at NM = 10 was chosen as a reference, and NK was held constant at a value of
] 20 for Case 1 and 30 for Case 4. It is seen that the convergence is fairly
rapid, and that as few as 4 azimuthal modes give reasonably accurate results.
Also, the gredter three-dimensionality in Case 4 appears to aid the convergence

in Fig. 11, but whether this would hold true in general is hard to say. Fig. 12

shows the convergence ftor Case 5 with NK = 20; here the actual values of Cp
are plotted because the relative variations are much greater, and the 'correct"
or design value was known a priori. It appears that in this case, which has a
solidity more than double that of Cases 1l or 4, at least 9 or 10 terms are

needed to get the error in below 10%.

[
Ps

The convergence of the calculations with NK is shown in Fig. 13

r for Cases 1, 4 and 5. The value of NM was held constant at 10 in all runs.

. Noting the different scale factors on each curve, it is seen that for comparable

r accuracy one must include many more radial modes in the highly three-dimensional
Case 4 than the more two-dimensional Case 1, which is intuitively satisfving.

he highest solidity case, Case 5, again exhibits the slowest convergence.

It should be kept in mind that the convergence of more localized
quantities, e.g., the sectional 1lift, L , or the local load distribution, a4 ,
can be expected to be slower than that exhibited for (:Ps' For Cases 1, 4 and
5, these appear to have converged within 1% with respect to NK. Cases 1 and 4

had also converged to this extent with respect to NM , although Case 5 still

exhibited variations on the order of 8-9% between NM = 9 and 10. At present,
the program storage is limited to NM €10, and its modification to allow further

increases in NM for this one case does not seem warranted at this time.




In summary, it appears that the inclusion of 10 azimuthal modes and

between 20 and 30 radial modes, depending on hub/tip ratio, provides sutficient
accuracy tfor most purposes, at least with regard to measures of overall pertorm-
ance. Of course, this conclusion may thé to be modified for parameters signith
cantly outside the range covered in Table 1. Qualitatively, it appears that

high solidity aggravates the convergence of both the azimuthal and radial mode
sericrs. Low hub/tip ratio cases require more radial modes, as expected, but

may have a small advantageous etfect on the co'nvex"\:encc of the azimuthal mode

series.

Fhe computer running times required for Cases 1-6 varied between

5

10 and 20 minutes on an IBM 360/65, using the G compiler, It is estimated that

.-

the running time on an IBM 370 would be reduced !

by 4 faceor of 6 or 7. By fay
the majority of time is spent in evaluating the axial integrals. The time
needed for their evaluation is primarily dictated by the number of integrals
which can be done analvtically before round-off error becomes a problem (see
Appendix C). As a result, the running time can be expected to increase along
with the solidity. As noted in connection with Cases 5 and 6, however, the
coefficient matrix in Eqn. (19) depends only on the first tfive parameters in
Table 1. The program has provision for storing the matrix on tape, so that
subsequent calculations for the same operating conditions, but dittferent blade

camber lines, can be performed in a matter of seconds.

E. CONCLUSTONS

A method has been presented for computing the steady loading on a
three-dimensional annufar blade row in compressible flow, given the blade
camber line. A kernel-function procedure is used to solve the integral equation
relating the unknown loading to the camber line slope. The greatest advantage
of the solution procedure presented here is that it allows analvtical expressions
to be derived for both the spanwise and chordwise integrals which are requived.
[t also allows the various aerodynamic and performance parameters of the rotor
to be expressed as simple algebraic functions of the loading expansion co-

efficients.

g




Calculations made thus far have concentrated on comparing the present
predictions against those of two-dimensional strip theory, as well as the three-
dimensional inverse lifting-surface theory of Okurounmu and “CCunc.h' wood
agreement between the three-dimensional and strip theories occurs only near
mid-annulus, even for a moderately high hub, tip ratio. For low-solidity blade
rows, it is also demonstrated that the present analysis predicts chordwise
loading distributions at mid-annulus which are in excellent agreement with those
of isolated thin-airfoil theory, tor blades with both angle of attack and camber.
The three-dimensional theory predicts loadings which are significantly higher
near the hub and lower near the tip than the strip theory, thus giving much
lower radial variations. Such behavior can be attributed to the induced angle
of attack distribution generated by the trailing vortex wakes, which is not
accounted for in strip theory; this smoothing appears to be the principle effect

of three-dimensionality, at least for subsonic relative Mach numbers.

Comparison with the inverse three-dimensional theory of Okurounmu and
3 657 . g "
McCune shows good agreement over the whole span for the case in which the
circulation is constant with radius. The chordwise load distributioa at mid-
annulus also compared well with the variation prescribed by them. However, for
blades designed to produce a linear variation in circulation from hub to tip,
the present theory predicts loadings which are significantly higher than the

design distribution. It is hoped to resolve this discrepancy in the futuve,

When coupled with the analogous treatment of the disturbance flowtield

produced by blade thicknoss.““'yl

the loading analysis presented here should
provide an efficient means ot studying three-dimensional ettects in turbo-
machinery rows. The program should prove particularly advantageous for evaluating
alternate blade camber lines at a given operating condition. The coefficient
matrix in Eqn. (19) then needs to be evaluated and inverted only once, so that
results for additional blade camber lines can be obtained in a matter ot seconds,
whereas a finite-difference solution, for example, would require a whole new
calculation for each case. Thus, the program could serve to narrow down the
number ot candidate blade profiles before going to a finite-difference solution

of the full nonlinear equations. It could also prove usetul in providing

29




better initial conditions to a difference scheme, allowing the latter to converge
in fewer iterations. Some development work remains, however. In particular,

the effect of varving the position and number of the collocation points, and
hence the number ot terms in the expansion of the unknown loading, should be
investigated. Also, the assumption of constant axial chord projection should

be relaxed to allow application to a wider variety of blade geometries.

Initially, it was planned to extend the reported lifting-surtface analysis
to supersonic tip speeds. However, it has been decided instead to proceed with
the extension to unsteady flow at subsonic tip speeds, for the following
reasons. In previous linearized treatments of both the thxcknos<:~l and inverse-
1oadin§3—’ problems, a transonic resonance has been shown to occur at super-
sonic tip speeds. he amplitude ot each duct acoustic mode is predicted to
become infinite at its cut-oft condition, though in reality the effects of
viscosity and nonlinearities in the flow would prevent this from happening.
Attempts have been made to incorporate viscous< 4 and nonlinear effects®  into the
linearized model in an approximate, ad hoc fashion. Although the resonant modes
can be successfully limited in this way, their resultant amplitudes are very much
dependent on the particular assumptions made concerning the damping and or non-

linear effects.

A more rigorous approach to the problem at supersonic tip speeds
would retain the nonlinearities in the governing equations to be solved, rather
than trying to approximate them in a linearized analysis. This ot course
requires numerical solution procedures, such as finite-ditterence techniques.
Three-dimensional relaxation solutions of the transonic nonlinear small-dis-
turbance equations, which are capable of including weak shocks in the flow, have
been obtained for subsonic, but supercritical, tlow through a rornr.lt Effonrts
are currently underway to extend this technique to numerical computations for
supersonic relative int'lows.:U Such an approach not only avoids the problem of
transonic resonance, but is also extendable to the full nonlinear equations
of motion, including the possibility of strong shock waves. A\ computer code
for solving the full three-dimensional Fuler equations for the steadv low

.

through a rotor is presently being developed at Calspan under another prungm.‘l
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For the above reasons, it was felt that a more useful extension of the

linearized three-dimensional analysis would be to the study of subsonic unsteady

tlow through a rotor. The use of small-perturbation analyses in the study of

the blades' aeroacoustic response to inflow distortion and to the problem of

blade flutter is well established. This effort is described in Section II.
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SECTION 11

UNSTEADY LIFTING-SURFACE THEORY FOR AN ANNULAR ROTOR

A. INTRODUCTION

The previous section dealt with the prediction of the steady loading
on an annular rotor for which the blade camber line has been specified. In
this problem, the flow is viewed as stationary in blade-fixed coordinates on
the assumption that the rotor is isolated, is operating in a uniform inflow,
and consists of perfectly rigid blades. In practice of course, such conditions
are never perfectly realized. The close proximity of other blade rows, as well
as non-uniformities in the incoming air, give rise to distorted inflows which
generate unsteady blade forces. These in turn can lead to degradations in per-
formance. Also, vibrations of the blades themselves can sometimes couple to
the resulting unsteady aerodynamic field in such a way as to lead to serious
aeroelastic problems. Unsteady aerodynamic loads, whether from inflow dis-
tortion or blade flutter, also act as efficient acoustic sources, and hence

their reduction is one means of reducing engine noise.

With the above applications in mind, work was begun on the formula-
tion of an unsteady three-dimensional lifting-surface theory for an annularv
hlade row. Namba<S also has extended st analysis of the steady flow case to
treat the unsteady problem. Kobayashi-. later appliced Namba's analysis to the
study of pure tone fan noise due to inflow distortion. However, the same scale
tactor appears in this formmulation as was included in the steady problem. As
mentioned in Section I-B, we have found no justification for its presence, and
hence feel the numerical results in Refs. 28 and 29 must be viewed with caution.

=
S;xlalml"l3

has also presented a lifting-surface theory tor the unsteady case,
as noted earlier, and we have shown that our expression for the pressure field
generated by the blade row is in agreement with his. We are hopetul that the

application of the techniques developed earlier for the steady problem will

lead to an efficient inversion of the unsteady integral equation as well.
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Section II-B below presents the assumptions made in the analysis
and the governing partial differential equation. In Section [I-C, solutions
to the equation are given corresponding to unsteady pressure monopole (source)
and dipole (force) singularities., The latter are used in Section [I-D to
develop the pressure field for the entire blade row. This is used in
Section I[I-E to derive the governing integral equation, whose features are
then discussed relative to the proposed solution procedure. Wherever possible,
the notation has been Kept consistent with that used in Section I for the

steady case, with a few exceptions which will be noted as they arise.

B. FLOW MODEL AND GOVERNING EQUATIONS

The same geometry is assumed for the present case as had been used

P

in our earlier study of the steady load problem. That is, the blade row is
assumed to be housed in an infinitely long, hard-walled annular duct of con-
stant hub/tip ratio, h , containing a uniform, inviscid, subsonic axial tlow
at Mach number M, as shown in Fig. 1. Any inflow distortions are viewed as
small perturbations about this undisturbed state. The blades rotate with a
constant angular velocity, which in this analysis is denoted 51 , rather than
W as used previously. In keeping with the usual convention, the latter
symbol will be used for the harmonic time dependence below. Since the blade
Doundary conditions are more easily expressed in blade-fixed coordinates, we
again express the governing equations in these terms. In this frame, the
steady undisturbed inflow has a velocity Ux* [U‘ ‘(Jl'“‘:]‘:
Nl

the helical stream surfaces defined by g = & - U # = constant. The unsteady

flow is assumed to be a small perturbation about this flow, so the disturbance

., and follows

fleld will be irrotational and isentropic. The linearization again allows us
to apply the blade boundary conditions along the undisturbed stream surfaces,
s0 that to first order in the perturbation scheme, blade thickness and camber
do not affect the unsteady loads. We also assume that the undisturbed relative

Mach number is subsonic all along the span.




The linearized three-dimensional equations of motion in blade-fixed

coordinates can then be reduced to the following single equation tor the

perturbation pressure, o

: « V-F 10a)
Lip) = ¥ Fa (
;3 b ir )
where the operator & is defined as (= 1~\
W
2 &) Q
2 J 7 LA \& 3 ‘ J J
.(=[1-M] 2+{1—\‘\1, ¥ ,2+—:~T—(r‘—-\
% g . .
dz a,/J | o ar : C1on)
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a 15 the force per unit volume exerted by the blade row on the fluid, and &,
is the undisturbed sound speed. (As will be seen shortly, the flow at upstream
Infinity will no longer be undisturbed, due to the presence of acoustic waves.
Accordingly, in this section we will use the subscript ( ), to denote condi-
tions at the reference state.) The hard-wall boundary condition at the hub and

tip, vy, = 0 , can again be expressed as
C at r=r r 41)

Equations (40) and (41) are the same as those solved in the steady
flow case, except for the addition of the three unsteady terms at the end of
(40b) .

C. SOLUTIONS FOR PRESSURE MONOPOLE AND DIPOLE SINGULARITIES

. . twt X : .
[f we assume a hamonic & time dependence for the excitation,
whether it be due to blade flutter or inlet distortion, the pressure and
velocity fields will also be harmonic at the same frequency because of the

linearization of the equations. Then the first step in the solution of

Eqn. (40) is to obtain the so-called pressure monopole solution, which

~ ’
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satisfies:

t
Lip,) = ) (8-8,)d(r- r‘,)d’(f—z.)c‘w
r (42)
subject to the hard-wall boundary condition in Eqn. (41).
This is obtained along the same lines as were followed for the steady flow

probleml, and the result is:

_ctl“)t o Lﬂ(g‘e,) b 4 an(f> Pn)((fo)
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pLr = ’}) ~{(BK ) ] above cut-off
v (-]

& 2 ; ;
As before, g% bt e I B ;':—, and n and k are the azimuthal and radial duct mode
i T

indices, respectively. R, and K,  are the corresponding radial eigenfunctions

and eigenvalues which satisfy Eqn. (41).

In the analogous steady flow expression, Eqn. (81) of Ref. 1, it was
Je
found that since K, is always greater thann” +

2 2
Mach numbers, ( —k—i-ﬂ- D %—%:). As a result, all modes were below cut-

off, with the exception of the n:=o0

, then for subsonic relative

i _ - — e ————

, K=0 mode. In contrast, a notable
feature of the above solution is that a given mode may or may not propagate

3 NLLe W 2
undamped down the duct, depending on whether (—'aT’_ rr ) is greater or less

2
than ( B K, ). For modes below cut-off, the signs in the complex exponen-

T

tial of Eqn. (43) were chosen so that such modes will decay, rather than grow,

with distance from the singularity. For propagating modes, i.e., those above

cut-off, the choice is dictated by the requirement that the group velocity of

the mode, which is the velocity at which energy is carried in the flow, always
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be away from the singularity. Alternatively, a small damping term can be added

to the left side of Eqn. (42), which results in even the modes above cut-off

having a small real part in the complex exponential of Eqn. (43). The correct
sign choice is then made by requiring that this part always be negative, after

which taking the limit of zero damping leads again to Eqn. (43).

Right at cut-off, A, =0, i.e.
2 (45)

2

(K,x) = ("_ﬁ_w_fr)

13&, /
and Eqn. (43) exhibits singular behavior. However, at this condition, the
derivation leading up to (43) is no longer valid, so this situation must be
treated as a special case. The solution for such a mode is,

-LtnG, Rnk () :
: 13°2,1] Rawld)  (46)
r

2 R Now)
c[u)t +n9+(—;;-) (___n‘lu )(z-z,)]

A +B L (B2-2)+
[ k nk o smpte

&
where A, and 3 are undetermined constants. This indeterminate nature of the
solution is evidently the result of attempting to excite a linear system at
one of its resonant points. Although interesting, such a situation is not
likely to arise in practice. This is because the set of K, in Eqn. (45)
depends only on the hub/tip ratio, blade number, and inter-blade phase angle,
whereas the right-hand side is a function also of the rotor speed, excitation

frequency, and axial Mach number.

Another interesting feature to note is that the n= k=0 term in

Eqn. (43) can be written in the same form as the others. This was not true

in the steady case, where this mode had an entirely different type of structure.

Nor can the correct steady term be obtained from that in Eqn. (43) by simply
setting w =0 . This anomaly is explained by recognizing from Eqn. (44) that
in the unsteady case A,, remains finite despite the fact that kK, =0 ,
whereas in the steady problem A\, vanishes. Hence, in the unsteady case, this
mode is always above cut-off, but in the steady case, it is always right at

the cut-off condition. The correct form of this mode in the steady problem
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should thus follow by specializing Eqn. (46) to0 wW=mn=k =0 and we have

shown that this is indeed the case.

The next step is to obtain an expression corresponding to a pressure
dipole singularity, i.e., the solution to

~

b (a7)
Zipy = v |2 8(0-6)8Cr-r)d(z2)e""]

3

where n is the unit vector perpendicular to the local undisturbed stream di-
rection, as shown in Fig. 2. This is obtained by differentiating the monopole

solution along this direction in source coordinates:

P, 1 (- 3 _an 3
° %\ o 36, - .+ "
o TR ;

e twt

n(0-6) = R ()R, (T,)

B 4rt,6’r;zm §f k<0 A nie
. {é [% . (%)Z(szr;)<nau+w)} +<%’£> '\nkW(f‘za)}

ci(%‘)2(-"—%*—“’-)@'2.)-)\““3-2,1 5

Physically, the pressure dipole solution represents the pressure field gener-
ated by a unit amplitude harmonic force concentrated at the point ( r , o

In the next sub-section, we use it to build up the pressure field for the

entire blade row by superposition.

D. PRESSURE FIELD FOR ENTIRE BLADE ROW

The solution to Eqn. (40) for the entire blade row is next obtained
by distributing the pressure dipole singularities along the undisturbed stream
surfaces gz = Eégt in Fig. 2, with an amplitude equal to the local unsteady
force exerted by the blade on the flow. In general, we must allow for a phase
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difference between the loading on successive blades; denoting the local loading

on the jth blade by ‘A-c} , we have

s A
e (49a)

where g is the inter-blade phase shift, and A, the loading on the zeroth

or reference blade. Periodicity requires that

Bp, = 271»p
2Tt P .
or ue = -—B— —p = J,’ * . e B" k.‘gb) "

Higher values of © would simply reproduce the same phase shifts, e.g., o= 8
is physically equivalent to -2, so we need consider only those values of o
indicated in Eqn. (49b). Note however, that in any given calculation w© ,

and hence pb‘Will assume a unique value.

By superposition, the pressure field for the entire blade row may be

written as

c(r
Plr;®.:0,t) = /fﬁo(rze r°,£,9,=2_ni+nz.)
o 5 U
°c A,o(r' s,) d ds (50)

where we have set Ap, = Ap . Substituting for -, and pg,and transforming the

streamwise integration to one over the axial coordinate using

o T ”(nuc)z Z,

we obtain

an(d") Rnk(d:)

plr,d,%,¢) » d.r/aLz
47Tﬁ r‘ / 2'-&%0 Anik

-{L [% 4 (_,;_)z ﬂuf;)(nﬂu+w>}+(ﬂu'2 nk"?"”(‘z‘zo)} AR(n L 2,)

. o v M\
etn (e FZ,)+L(-B-) (Lau;“—’—>(a “8y) = Ay 18 =2,]
. (51)
where now n = m8 +p




In writing this result, it was assumed for convenience that the axial projec-

tion of the blade chord, ¢, = ¢/ ¥1 *(Z%f)‘

radius (Fig. 2). Also note that the same symbol o has been used to denote

was a constant independent of

both the unsteady pressure and the integral shift in azimuthal mode number
caused by the phase shift between blades; when used below its meaning should

be clear from the context in which it appears.

B UNSTEADY INTEGRAL EQUATION

The desired integral equation relates the unknown loading, Ae ,
to 7V, , the velocity component along the n direction in Fig. 2. It is this
velocity which is most easily related to the excitation, whether inflow dis-
tortion or blade flutter, through the surface tangency.condition. The ex-
pression for 7, may be derived from the normal component of the momentum
equation:

L U L R ( ir _ )
It R 3s A In 8 (52a)

which, for harmonic time dependence reduces to

aU'n : ! 819 e
UR—3§-+LC\JUH‘—§ —'a—:—,a) (S:b)

where it is understood that the variables now refer only to their spatial
amplitudes. This equation may be integrated from upstream infinity along the
undisturbed stream direction, S . The constant of integration which must be
supplied is the value of v, at upstream infinity. Following the same line of
reasoning given after Eqn. (44), we imagine that a small amount of dissipation
1s present in the system while performing the integration, which insures that
U, (-® )= 0 . The limit of zero dissipation is then taken in the result,

which reads

$ W et
- ’ CTREP 0p ,
v (8 = - o fe (—a—n-Fa)ds
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where the integration is to be carried out with r and n (or & ) held constant.

The normal derivative of the pressure is obtained from Eqr. (

S1) as
9t ! L‘?_f’_ﬂ_'“__ap)
dn \/,,(Bu_f‘)z r a6 Uu adz
F 2r.2
-‘ - (=) cp§ B-1
' = g Ap(r,z)e L Iz~ ZTE}\ H(z) H(c, -2)
3&(‘ 1+/___’:) o B /
\ U ¢
r e,
. 8 f

AEVE) Kot b e e [ 1 s
. na By elegomy . jz-
f <%) 1(‘(,;)-}} . n§+L[_3,U + (‘(,3- U]LZ Zo) = A i ZZ‘IA)O("‘ 2)
=

o o

where J(x) and Hx) are the Dirac delta function and Heaviside step function,
respectively, and

o s E (8 (5) (25

The force Fg is considered positive when it points in the

(sS)

N
* ¥

direction; for the entire blade row it can be expressed as,
s 8-1 L"‘Me
le = —Aplr,z) J e d‘(n—nJ) Hz) H (e, -2)
; ks

where the minus sign in front is required by the fact that in our convention
Ap 1s positive when p(n=

07 ) is greater than (n=
is negative.

©*), in which case Fs

i rg i (2g )
N = - il
1+ (B)F i B - Eag




Using this and the definition of g in Eqn. (49b), we obtain

a2
-Ap(f‘,é)'v’*(iu—) cpg B-!

4 ik (56)
Fg = = e 325(4--——)/4(2)/—/0_& 2)

Substituting (54) and (56) into (53) gives:
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where we've implicitly assumed ¢ € Z £(,, so that the Heaviside step func-
tions in the first term could be set to unity. Since r, §,Z, and Z are each
constant during the integration over z’, the latter can be done analytically.
After some manipulation, the result is:

2 (pg : :
Bue'” P i

1: ¢
U,,-—-——-————Zd‘; fe S Aplnd ) d 2
po R/jr‘- ( )o 4 / -

(ng + L %(E,'E)

o R (IR, (F)e
+ / /dZ Z Z: nk o
4TI/D,UR me-o k
N

> &) (5]

A AT g0, S ST

i
z
|
|



2+ (M)e]j H(2~L)

r; [< ) <nahu) ]] oot

(—"l;—,a—“-’) (2-2,) - AN lz-2,l

- & ‘L[-:(”_:’:U—w) [f\r\f{c\ “<£UL (f—l-z'-) )\ik]— /\fk R%r’)fzrn(ﬁﬂr)‘;\m?

L("Q”")cz 2= Ml @B}

‘ AP (1, 2,)
(58)
where f(r) was defined in (55) and
r o+ -
g(ry = i+<ﬂ )(.L_w.) (59)
r U U

Consider the convergence of the m» and K series in Eqn. (58). In
the last two terms, convergence of the series is assured by the presence of
- A P& =g,

nk o

the factor e This is because for m (and hence n ) fixed, as

3 4 : 30
K becomes large, K _, grows linearly with K i
Nk ™ =EF k >>n , n fixed (60)

and beyond a certain point, the modes cut-off (Eqn. (44)). From then on, X\
remains real and grows with K , thus insuring exponential convergence.
Conversely, in the limit of large |m) (and hence |n} ), for k fixed,

¢ 2-4
it is known that $

K ~ |In| noYrY, Kk€ined (61)
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and hence, inl 2a

A
ik /52 r.T (b:)

i X 2 ' s
| Since we have assumed /3R > 0 , convergence is again assured.

Unfortunately, this exponential decay is not operative in the first
group or terms under the double summation, i.e., those proportional to H(2-2,),
these diverge with fespect to bothm and k. The first term in Eqn. (58) also
poses a problem, in that it exhibits singular behavior on the blade surfaces

art : 3 : A g i d
G- -—51— , which is where we ultimately wish to evaluate it. Similar

difficulties arose in the steady flow problem; to remove them in the present
case, a procedure very much analogous to that used in Ref. 1 was followed.
Namely, the same group of divergent terms was added and subtracted from the

original divergent series. The added terms can ultimately be summed in the

context of generalized functions to give a sequence of delta functions which
exactly cancels the first term of Eqn. (58). The original minus the sub-

i tracted terms, through use of the fact that each of the R satisfies

1 Bessel's equation, can be rewritten in terms of the first and second radial
derivatives of the R,\k . If two successive integrations by parts in the

radial coordinate are then made, and advantage taken of the fact that both

Ap and R“ksatisfy Eqn. (41), the result is a series which is convergent with

respect to both m and k.

: This group of terms, as in the steady flow casel, represents the
wakes shed by the blades. In the present case, the wakes contain both trail-

: ing vorticity produced by radial gradients in the circulation, and shed vor- 3
ticity created by the fact that the circulation is now varying in time as well.
Since the manipulations described above are quite similar to those used in

Ref. 1, but somewhat lengthier, they are not reproduced here. The end result
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where it should be recalled that n n«8¢g>and \h‘ . ftr) and ju“are defined

in (44), (55) and (52), respectively.

The above expression contains only convergent series. The first
two lines are the contributions to the wake from the axisymmetric modes, n =
0. From the relation between n and ™ we see that such modes can arise only
from the m = O term, and then only in the special case £=0 1i.e., zero phase
lag between blades. Accordingly, these are written with the Kronecker delta
symbol, &

lines are the contributions to the wake terms from the [nl > Q0 modes. All
ing - ( @z -2,)

po » Which is one when o = 0 and zero otherwise. The next eight

of the wake terms contain the exponential factor & ’

t .
as well as the implied € ‘¥ time dependence. Along the undisturbed kS
P 3 ;

helical streamlines (§ = constant), this can be rewritten as

L ingeiw [e- 0] |

Thus, an observer moving in this direction with velocity U, senses a frozen
velocity pattern from these terms. This reflects the fact that, in a linear-
ized analysis, the wakes convect downstream unattenuated at the freestream
relative velocity.

The last four lines in Eqn. (63) represent the wave field that pro-
pagates away from the rotor in both directions. This consists of both damped
and undamped waves, or modes; whether a particular mode is damped or not is
determined by the cut-off criterion described by Eqn. (44). The modes above
cut-off represent a loss of energy through acoustic radiation. Hence, a useful
by-product of the linearized analysis is that it will also predict the total
flux of acoustic energy, as well as its distribution among the various propa-
gating duct modes.

The only steps remaining in the formulation of the unsteady integral
equation are to specialize Eqn. (63) to the reference blade surface, &= o0,

and to specify the normal velocity there, V,, (ry & =0,Z ), in terms of some 1

prescribed excitation. The latter is accomplished by requiring that at each

instant the streamlines remain tangent to the blade surface. The excitation
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could be an inflow distortion pattern, such as might result from the wakes of
an upstream blade row or distortions in the engine inlet itself. Or, v, could
be considered to be the result of vibrations of the blades themselves, i.e.,

the so-called flutter problem.

In any event, once the left-hand side of Eqn. (63) is prescribed,
the integral equation which results must be inverted to obtain the unknown
loading amplitude, Ao . Generally speaking, at each point there will be a
phase shift between the unsteady loading and the normal velocity which will
depend on position, reduced frequency, and Mach number. This was not true in
the steady flow problem, where by definitiem-everything is "in phase.'" To
account for this, O must now be allowed to be a complex quantity, having both
real and imaginary parts. What we actually have to solve then, is two integral

equations, one each from equating the real and imaginary parts of Eqn. (63).

Equation (63) is far too complicated to hope for an analytical solu-
tion, and so a numerical inversion procedure must be developed. At present,
it appears an extension of the procedure applied in Section I to the steady
problem should work here as well. Specifically, Ap would be expanded in the
same finite series as in Eqn. (12), except that now the unknown coefficients
would be complex. In addition to automatically satisfying the appropriate
leading and trailing edge conditions, use of this expansion will again lead to
greater efficiency in computing the axial and radial integrations in (63). The
axial integrations will be of the same form as in Eqn. (14), although the form
of the constant parameters will change somewhat. Thus, the analytical evalua-

tion procedure given in Appendix C can again be used to good advantage.

The majority of terms in Eqn. (63) will also lead to radial inte-
grations of the same form as in (13). The exceptions are those portions of the
wake terms which involve reciprocal powers of [ 1 + (f%;L)z ]+ however, such
factors vary monotonically from hub to tip, and so should be expressible as a
finite series of integral powers of ¢, = rj/r, with a high degree of accuracy.
Hence, we believe that the radial integrations could again be performed an-

alytically, as outlined in Appendix B.




If NI x NJ terms are retained in the expansion for A+ , we would
have a total of 2 x NI x NJ scalar unknowns. Substituting this expansion into
the integral equations described above, and evaluating the resulting set of
equations at an equal number of collocation points, will yield a system of
2 x NI x NJ simultaneous, linear, algebraic equations. These can again be
viewed as a single matrix equation, with the elements of the coefficient matrix
being expressed in terms of the axial and radial integrations discussed above.
The inversion of the matrix equation could then be carried out in a straight-

forward manner using standard techniques.

B CONCLUSIONS

A linearized three-dimensional analysis has been developed for
studying the unsteady loading on an annular blade row in compressible flow.
Pressure dipole singularities are used to represent the blades in a lifting-
surface type analysis. The result is an integral equation which relates the
unknown loading to the prescribed variations in normal velocity at the blade
surfaces. The latter can be the result of either an inflow distortion pattern
or vibrations of the blades themselves. Terms can be identified in the inte-
gral equation which represent the blade wakes. These include elements of both
trailing vorticity, produced by spanwise loading gradients, and shed vorticity,
which results from the temporal fluctuations in loading. The wakes can be
shown to convect downstream along the helical undisturbed stream surfaces.
Also included are terms which represent waves propagating unattenuated away
from the blade row in both directions. This acoustic radiation field would be
predicted as a by-product of the solution, with regard to both total acoustic

energy flux, and its distribution among the various propagating duct modes.

The unsteady integral equation, though somewhat more complicated
than the analogous steady flow equation discussed in Section I, contains axial
and radial integrations of the same basic analytical form. This suggests that
a suitable extension of the numerical inversion procedure developed for the
steady case should work here as well, and this is the approach that is being

pursued.
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SECTION 111

FURTHER COMPARISONS OF APPROXIMATE ROTOR-STATOR INTERACTION THEORY
WITH ACOUSTIC DATA FROM ANNULAR CASCADE

USRS

po—

A. INTRODUCTION

Under the previous contract, an approximate theoretical model was
developed to predict the noise generated by rotor-stator interaction.1 In order
to assess the accuracy of this theoretical model, experimental acoustic data
were obtained in an annular cascade facility upstream of a rotor-stator pair,
and compared with the theoretical predictions. Unfortunately, power constraints
on the rig restricted the acoustic tests to low rpm where only the tourth and
higher harmonics could propagate undamped in the duct. The prediction of these
tones was felt to be a rather severe test of the theory. While the theory was
able to predict cut-off frequencies and tollow relative trends in the data

adequately, it significantly underestimated absolute levels.

Additional numerical studies using the theory showed that the prediction
of such high harmonics is critically dependent on the assumed shape for the rotor
blade wakes. Very small changes in assumed wake shape can lead to large changes
in the predicted noise levels, particularly for the higher harmonics. The
approximate theory relies on isolated airfoil data for the wake shapes. It may
be that the prediction of intertference noise at these high harmonics ot blade

ZE passage frequency cannot be accomplished in any practical sense until we are

E | able to predict the wake structure to a much higher degree of accuracy.

On the other hand, because of the much higher rpm at which typical
aircraft fans and compressors operate, it is the fundamental blade passage
trequency, and perhaps its second harmonic, which account for most of the noise
problem. At such speeds, the higher harmonics fall outside the range of human
hearing. 7he theory indicated that the first few harmonics of blade passage

frequency are relatively insensitive to the shape of the rotor blade wakes and

that the level of the interaction noise at these harmonics, if excited, will be
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much larger than the levels of the higher harmonics. Therefore, it was felt
that a more reasonable test of the theory would be to compare its predictions
against data taken for the lower harmonics. This required modifying the drive

mechanism in the annular cascade so that higher speeds could be achieved. The

TR P B

repowered rig and the experimental procedures are described in Section III-B,

followed by comparisons with the theoretical predictions in Section III-C.

B. ROTOR-STATOR INTERACTION NOISE MEASUREMENTS

T Rotating Annular Cascade Facility

VECRAE uihE SN
»

As part of the work under a previous program, Contract AF33(615)-3357,
an annular cascade facility was designed and fabricated. Its principal purpose
is to provide fundamental experimental data during and prior to the occurrence
of rotating stall in order to improve our understanding of the phenomena and
for use as a guide in improving the theoretical rotating stall analysis. In
addition to the study of rotating stall, the facility has also been used to
provide acoustic data for comparison with theory. A detailed description of the
annular cascade facility has been presented in Ref. 31. Only a brief descrip-

tion of the facility is given here.

The annular cascade facility consists of a test section built
around the outer front casing of a J-79 jet-engine compressor with a Calspan
fabricated hub. The facility includes a bell-mouth inlet on the outer casing and
a bullet nose on the hub to provide a smooth flow of air to the test section.
Outlet ducting is connected to an independently variable source of suction to
provide the required flow through the annulus. An electrically powered two-
speed axial flow fan is used as the source of suction. Continuous control of

the mass flow is achieved through the use of variable inlet guide vanes to the

fan and a variable damper in the fan exit flow.




The configuration of the annular cascade used for the rotor-stator
interaction studies is shown in Fig. 14. The test section forms a circular
annulus with an outer diameter of 29.35 inches and an inner diameter of 23.35
inches which provides a hub-to-tip ratio of 0.80. The rotor-stator stage
studied is designated Rotor Set No. 1l (46 blades) and Stator Set No. 1 (54
vanes) in Ref. 31. These are modified blade rows from the fifth stage of a
J-79 compressor. Their characteristics and performance when used as isolated
blade rows in the annular cascade have been presented in Ref. 31. The semi-
chords of the rotor and stator were 0.0604 ft. and 0.054 ft., respectively, and

the axial separation of the mid-chord planes was 0.125 ft. The mid-annulus

o e

stagger angle of the rotor was 40 degrees in all tests. Two different stator

stagger angles (37.2 and 28.2 degrees) were tested.

S

The rotor in the annular cascade is driven by a hydraulic motor. An
external hydraulic pump system is used to provide power for the hyvdraulic
motor. In the tests of Ref. 1, the hydraulic pump system was powered by a
30 horsepower electric motor. With this system, the maximum rotor speed
attainable was 1450 rpm. This speed was insufficient to allow propagation
of sound at the fundamental blade passage frequency. It was calculated that an
increase in rotor speed from the maximum of 1450 rpm attained in the past
experiments to approximately 1700 rpm should be sufficient to exceed the cut-
off condition for propagation of the fundamental blade passage tone in the rotor-
stator stage. Since the time that the past experiments were performed, the
rotating annular cascade was modified to include a 50 horsepower hydraulic pump
syvstem in the rotor drive, and changes were made to reduce pressure losses in
the hydraulic valve system used for rotor speed control. With these changes,
a maximum rotor speed of 1760 rpm was attained. Acoustic tests in the modified
annular cascade succeeded in exciting the fundamental as well as higher harmonics

of blade passage frequency.

o Acoustic Measurements

The Sound Pressure Levels produced by rotor-stator interaction
were measured on the outer casing upstream of the rotor. In taking these data,

the fan system downstream of the annular cascade was turned off and the fan was
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allowed to rotate freely under the influence of the flow generated by the rotor
in the annular cascade. In addition, all dampers in the downstream drive system
were opened wide. It was convenient to use this wide open configuration because
it was found to provide nearly constant inlet swirl angles relative to the rotor.
That is, the mean axial velocity in the annular cascade increased in direct
proportion to the rotor angular velocity. This feature made application of the
rotor-stator interaction theory much simpler because the dimensionless steady
state loss and turning performance data for the rotor also remained approximately

constant with changing rotor speeds.

The instrumentation used for the acoustic tests is shown schemati-
cally in Fig. 15. A Bruel and Kjaer (B§K) condenser microphone (Type 4133)
mounted with its diaphragm flush with the inner surface of the compressor casing
(Fig. 14) was used to measure the rotor-stator interaction noise. The micro-

phone was powered by a B&K Type 2604 microphone amplifier. The output from the

amplifier was processed on line by a General Radio Type 1921 real time analy:zer

to obtain one-third octave spectra of the signals. Absolute calibration of the

o i AN

complete system was obtained by recording a 114 db signal from a General Radio
Type 1562-A sound level calibrator on the recorder chart of the spectrum analyzer.
The calibration signal was recorded at the start of a test series and again at !
the end of a test series to check for drift of the system. The observed drift

was 0.5 db or less in all tests.

The summed output from the multifilter in the GR real time analy:zer
was displayed on a dual beam oscilloscope along with a reference signal from an
RC oscillator. The multifilter summed output was conditioned by attentuating
all one third-octave levels with center frequencies of 500 Hz and below. This
was done to reduce noise at frequencies less than the fundamental blade passage
tfrequency. Oscilloscope records of the conditioned noise signal are shown in
Fig. 16. In these photographs, the lower trace is the noise signal and the
upper trace is the output from the RC oscillator tuned to the same frequency
as the predominant noise harmonic. The jitter in the noise signals is caused
by the presence of frequencies other than the predominant harmonic. Tuning of
the audio oscillator was accomplished by setting the oscilloscope trigger

mechanism to fire on the audio oscillator signal and then adjusting the oscillator
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frequency until a stationary noise signal was attained. In some tests, the
correct frequency was difficult to determine because of the jitter in the noise
signal. The correct frequency was then determined by forming a Lissajous

figure from the noise and oscillator signals, and tuning the oscillator frequency
until a stationary Lissajous figure was obtained. The frequency was then read

on a Berkley universal counter and timer. A similar counter was used to deter-
mine the rotor speed from signals generated by a magnetic pickup and 120 tooth

gear on the rotor drive shaft.

The procedure described in the previous paragraph was used to determine
the frequency of the predominant pure tone noise for all tests where a strong
blade row interaction signal was obtained. Thus, it was possible to identify
accurately which harmonic of rotor blade passage frequency was being excited
by the interaction mechanism. In the upper photograph of Fig. 16, the predomi-
nant frequency is the fundamental of blade passage frequency. In the lower
photograph, both the fundamental and second harmonic of blade passage frequency

are apparent.

Samples of the one-third octave spectra of the interaction noise are
shown in Figs. 17 and 18. These figures are direct reproductions of the output
from the spectrum analyzer. Absolute Sound Pressure Level for any one-third
octave band is obtained by correcting the relative db levels for background
noise, system gain, microphone response and filter characteristics. The system
gain correction is independent of frequency and is noted on the lower left hand
side of each figure. For the particular example of Fig. 17, system gain is
corrected for by adding 80 db to all relative levels. For Fig. 18, the gain

correction is 80.5 db. The remaining corrections will be discussed shortly.

Figures 17a through 17¢ have been chosen to illustrate the extremely
sharp rise in interaction noise as rotor speed is increased over a very small
range of rpm from below cutoff to above cutoff of the fourth rotor blade
passage harmonic. Figure 17a corresponds to conditions slightly below cutoff.
Here the noise spectrum is generated primarily by turbulent pressure fluctuations
within the boundary layer on the outer wall and by the free-wheeling fan down-

stream of the annular cascade test section. Figs. 17b and 17¢ show the sharp
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rise in fourth harmonic interaction noise as the rotor rpm increased to above

cutoff conditions. This rise can be seen in the third octave bands centered

at 3150 and 4000 Hz. Both of these third octave bands respond because the pure
tone frequency is nearly mid-way between these two bands. The calculated fre-
quency of the fourth harmonic is indicated by an arrow on the spectra; the numer-
ical value is shown on the lower right hand side of Figs. 17a through 17c.

The corresponding measured pure tone frequency is also indicated on Figs. 17b

and l7c.

Figs. 18a through 18d are spectra obtained at rotor speeds sufficient
to excite the tfundamental blade passage frequency. Here the fundamental fre-
quency and the second and fourth harmonics are apparent in the spectra. In

Fig. 18a the fundamental frequency is predominant and smaller Sound Pressure
Levels are evident at the second and fourth harmonic frequencies. When the rotor
speed is increased by five rpm (Fig. 18b), the second harmonic disappears into
the background noise. When the rotor speed is again increased by small amounts
(Figs. 18c and 18d), the second harmonic grows rapidly while the fundamental
harmonic decays. The oscilloscope records in Fig. 16 correspond to the spectra
presented in Figs. 18a and 18c. The rapid growth and decay of Sound Pressure
Levels at various harmonics of blade passage trequency with small changes in

rotor speed was observed throughout the complete test series.

As noted earlier, the relative Sound Pressure Levels obtained from
spectra such as those shown in Figs. 17 and 18 require several corrections in

addition to the correction for system gain. These are as follows:

(a) Background Level Correction - The Sound Pressure Levels in the

third-octave bands contain contributions from the background noise
levels as well as the pure tone noise from rotor-stator inter-
action. The background noise level was estimated by inspection of
the third-octave bands adjacent to those responding to the various
harmonics of blade passage frequency. An example of the procedure
is shown in Fig. 18a. In this case, the relative background

level for the third-octave band centered at 1250 H: is estimated
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by drawing a straight line between the spectrum levels centered at
1000 Hz and 2000 Hz. This line intersects the 1250 Hz band at a
spectrum level of 31.5 db. The spectrum level at the third-octrave
band centered at 1600 Hz was not used in this case because it
contains some contribution from the fundamental blade passage
frequency. Ignoring the spectrum level at 1600 Hz makes very
little difference to the background correction in this case. If
the measured spectrum level is designated S., and the background

level BH , then the corrected spectrum level is given hy

4 9 ~1 B
SPL Corrected for Background = 101%8 {:Lo?' —7-01 - : —1—‘3] ik
or equivalently
. -(4db /10)
Background Correction = 10,&3 [, - j0 ] db

e

(b)

where

Adb = 5, -8, db

The background correction is shown as a function of Adb in Fig.

19, which is the same as Fig. 6-3 of Ref. 32.

Filter Correction - At constant rotor speed, the rotor-stator

interference noise at the various harmonics of blade passage
frequency are essentially pure tones at specific frequencies.

If the frequency of these pure tones does not correspond to one

of the center frequencies in the third-octave filters of the

real time analyzer, then the measured third-octave level will be
lower than the pure tone level by an amount depending on the

ratio between the pure tone frequency and the third-octave center
frequency. This arises because of the characteristic shape of the
third-octave filter curve. The measured response of the filters
in the real-time analyzer used in these tests is shown in Fig. 20.
This curve is an average of the results obtained for filters with
three different center frequencies, §f, . The measured noise

data for a harmonic frequency, f, were corrected by using this
curve to determine the attentuation of the filter at the appropriate

frequency ratio, f/f; . When two third-octave bands responded at
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approximately equal levels, such as shown in Figs. 17b and 17¢,
both values of measured third-octave levels were used separately
to estimate the correct pure tone sound pressure level (using
the correct values of §/f ftor each band). In these cases, the

two answers generally agreed to within 1 db or better.

(¢)  Microphone Response Correction - The frequency response of the

BGK condenser microphone was not completely tlat in the frequency
range above 1000 Hz. This is shown in Fig. 21. The lower curve
in this figure is the appropriate curve ftor the microphone flush-
mounted in the annular cascade without its protection grid. The
overall system gain was set by using the 114 db GR sound level
calibrator at a frequency of 1000 H:z. Thus the lower curve in
Fig. 21 can be used directly to correct the results for micro-

phone rvesponse at the harmonic frequencies of interest,

Numerical examples of the data rveduction technique are given in Tables

and 3 for the spectra presented in Figs. 18a and 17¢. The example in Table
15 tor a spectrum in which several harmonics of blade passage frequency are
present in separate third-octave bands. The example in Table 35 is for a spectrum
in which two adjacent third-octave bands are responding at nearly equal levels
to the same harmonic of blade passage frequency. In this case, the data tor
both third-octave bands have been analyv:zed to show the possible error when
the pure tone frequency is not near any of the center frequencies. The results
from separate analvsis of the data from the two third-octave filters are 128.1 db
and 127.3 db. This is within the 1 db diftference mentioned previously for

such cases.

The results of the interaction noise measurements are presented in
Figs. 22 through 29, Each figure shows the corrected SPL of a particular blade
passage harmonic as a tfunction of rotor speed.  The approximate background noise
levels are also shown in each figure. The small downward facing arrows in these
figures indicate points where the spectrum levels were low enough to be
obscured by the background level. Spectrum levels within 3 db of the background

contain background level corrections which exceed 1 db and should be constdered

as highly approximate in view of the method used to estimate the background noise,
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Table 2

SAMPLE OF ACOUSTIC DATA REDUCTION FOR
SPECTRUM WITH MULTIPLE HARMONICS OF BLADE PASSAGE FREQUENCY

Rotor RPM = 1695.5 (See Fig. 18a)

Blade Passage Frequency (46 blades) = 4

Blade Passage Harmonic

Harmonic Frequency, f(Hz)

Third-Octave Centgr Frequency, fo(Hz)
Frequency Ratio, t/fo

Measured Spectrum Level, SM (Relative db)
Estimated Background Level, BM (Relative db)
Sy - By (db)

Background Correction (db) (Fig. 19)

Sy Corrected for Background (Relative db)
System Gain Correction (db)

Filter Correction (db) (Fig. 20 for f/€0=1.040)
Microphone Response Correction (db) (Fig. 21)

Final Corrected Sound Pressure Level (db)

56

1695.5

6. X 60

52.
+80.5
0. 2
0.2

135.1

1300 Hz
2 3

2600 5200
2500 5000
1.040 1.040
35,10 34.2
30.7 2957
4.3 4.5
-2.0 -1.9
S50 323
+80.5 +80.5
+0. 2 +0. 2
+0.6 +1.8
114.3 114.8




Table 3
SAMPLE OF ACOUSTIC DATA REDUCTION FOR SPECTRUM WITH

TWO ADJACENT THIRD-OCTAVE BANDS RESPONDING NEARLY EQUALLY TO
THE SAME HARMONIC OF BLADE PASSAGE FREQUENCY

Rotor RPM = 1160.5 (See Fig. 1l7c¢)
1160.5
Blade Passage Frequency (46 blades) = 46 Xx 60

Fourth Harmonic of BPF, f = 3559 Hz

Third Octave Center Frequency, fo (Hz) 1000

= ; s e
Frequency Ratio, /ro ks 0.890

Measured Spectrum Level, SM’ (Relative db) : 43.0
Estimated Background Level, BM’ (Relative db) W 23,3
SM - BM (db) <G 19.7
Background Correction (db) Fig. 19) 3 0

SM Corrected for Background (Relative db) " 15.0
System Gain Correction (db

Filter Correction (db) (Fig. 20)

Microphone Response Correction (db) (Fig.

Final Corrected Sound Pressure Level (db)
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All of the acoustic measurements were made with the rotor stagger angle
held constant at 40 degrees. However, two stator stagger angles were used.
Figs. 22 through 25 show the data measured with a stator stagger angle of 37,2
degrees while Figs. 26 through 29 show similar data with a stator stagger angle
of 28.2 degrees. Data were obtained for the fundamental blade passage frequency
and the second, fourth and fifth harmonics. The third harmonic was detected in

19

only two of the 195 spectra obtained in the complete test series. These two

data points are shown in Fig. 27 along with the second harmonic da“a measured
with a stator stagger angle of 28.2 degrees. There is evidence that the third
harmonic was present at similar rotor speeds ( % 1675 rpm) with a stator stagger

angle of 37.2 degrees. However, its level in that case was not strong enough to

analyze with any degree of accuracy.

In Ref. 1, interference noise data were presented for the same rotor-
stator configuration in the annular cascade as used in the current test program.
The maximum rotor speed attained in those past tests was 1450 rpm. Only the
fourth and fitth harmonics of blade passage frequency propagated at these low
rotor speeds. However, since the annular cascade had been disassembled, modi-
tied to increase available power, and reassembled between tests, it is worth
mentioning that the current test results agree quite well with the past test

results in the region where the two sets of data overlap.

[t is evident trom the results that the modified annular cascade
attained rotor speeds high enough to excite the fundamental as well as higher
harmonics of blade passage frequency. Thus the experimental acoustic study
succeeded in its goal of providing data at low harmonics of blade passage
frequency for comparison with the rotor-stator interaction noise theory. Com-
parisons between this theory and the experimental results are presented in the

following sub-section.
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Ce COMPARISONS WITH THEORY

i Theoretical Model And Input Data

The details of the rotor-stator interaction noise theory were
presented in Ref. 1, along with the earlier comparisons to data at the fourth
and fifth harmonics of blade passage frequency. The acoustic model assumes
that the rows are housed in an infinitely long, hard-walled annular duct of
constant hub/tip ratio. Each row is represented by a three-dimensional array
of radially-oriented line dipoles, whose strength is fluctuating in time. The
resulting acoustic field is represented as a superposition of propagating duct
modes of the type studied by Tyler and Sofrin.15 Reflections frem neighboring i

blade rows or terminations of the duct are thus neglected.

The strength of the fluctuating dipoles is determined from the
rotor-stator interaction analysis of Osborne,33 which is an extension to com-
pressible flow of the classic incompressible model of Kemp and Sears.34’35
This is a two-dimensional model which assumes that the unsteady aerodynamic
response of both the rotor blades and stator vanes can be calculated as though

=% The results of Osborne's analyvsis are

they operate as isolated airfoils.
closed form expressions for the fluctuating lift produced by each of three
interaction mechanisms: unsteady 1ift on the rotor produced by the steady
field of the stator, unsteady 1ift on the stator produced by the steady field
of the rotor, and unsteady 1ift on the stator produced by the impingement of
the rotor viscous wakes. The first two are usually termed potential inter-
actions, and the last a viscous interaction. These fluctuating lift predic-

tions, since they are two-dimensional, are input on a strip theory basis to

the three-dimensional acoustic model described above.

The overall theory that results can predict the total acoustic
energy flux away from the stage in either direction, the Sound Pressure Level
(SPL) at any point in the duct, and the individual mode amplitudes. The inputs

required are the steady loading on both rows, which is used in the potential
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interaction calculations, and the drag coefficient of the upstream rotor blades,
which is used to infer the wake velocity defect for the viscous interaction.

As part of a larger study of rotating stall phenomena,37 data were obtained

on the circumferentially-averaged turning performance and total pressure loss
across the rotor operating alone. Viscous losses across the stator were as-
sumed negligible, and its turning performance estimated from the manufacturer's
design data. The earlier comparisons used this information to calculate ap-
proximate values for the inputs required by the theory, using Eqns. (36)-(43)

of Ref. 1.

The same procedure as in Ref. 1 was used in the latest series
of comparisons, except that the reliability of our input data was improved
in several respects. The main improvement is that we now have data on the
total pressure loss across the rotor in the presence of the stator,38 whereas
before our only data was for the isolated rotor. As a result,-the predicted
CD of the rotor blades now lies in the range 0.05 - 0.07, which is much more
reasonable than the value 0.16 which had been predicted from the isolated
rotor data.l We also now have data on the total pressure loss across the
stator operating as part of the stage,38 whereas before no data on the stator
were available. Although not needed for the viscous interaction calculation,
this loss does play an indirect role in estimating the stator steady lift (see
Eqn. (42) of Ref. 1). The estimates of stator turning performance are now
based on extrapolations of turning data measured on the isolated stator row
in the annular cascade,1 whereas in the earlier study manufacturers design
data were used to estimate stator turning.1 As before, we had to rely on
isolated rotor turning performance due to the difficulties involved in trying

to instrument the small gap between rotor and stator.
2s Discussion

The present calculations once again indicate that it is the

rotor viscous wakes impinging on the stator which is the dominant noise genera-

tion mechanism. The SPL predictions for the mean stator stagger angle of 28.2° !




are compared with the newly acquired data for the first through fifth harmonics

of blade passage frequency in Figs. 30a-d. The gaps in the experimental data

are those regions in which the signal was close enough to the background

CrgL e AP

level that no reliable level could be inferred, as discussed in Section III-B.

In each figure, the rotor rpm at which the various duct modes first propagate

R ——

is indicated by a right-facing arrow with a pair of integers which denote the
azimuthal and radial mode numbers, respectively. It should be recalled that
right at the cut-off rpm the mode amplitude is theoretically infinite, since
no attempt was made to include viscous or nonlinear effects in the model.1
Thus not much significance should be attached to the height of the theoretical
peaks in this vicinity, as they are determined primarily by how closely one
wishes to approach the cut-off rpm. Generally, the calculations were made at
increments of 50 rpm, with closer spacing near the cut-offs to better exhibit

where the modes first begin to propagate.

Once again, the highest harmonics are underestimated as shown
by Figs. 30c, d, although the agreement is not bad at the higher rpms in these
two cases. Note that this is because the theory shows a definite increase
in SPL with rotor speed, as one would expect intuitively, whereas the average
level of the fourth harmonic data changes little, and the fifth harmonic data
show only a slight rise. In general, one can also reasonably correlate the
location of the theoretical peaks near cut-off with those in the experiments.
However, the data do show much more of a peak/valley structure than does the
theory. No firm explanation is apparent for this, although it may be the
result of the reflection/transmission of the acoustic signals by the upstream
rotor, which is not accounted for in the theory.

Curiously, the comparisons at the lower harmonics, Figs. 30a,
b, show a reversal in the levels of theory and experiment. The predictions
are now too high over the entire range in which data could be taken, which
was limited again by power constraints. The cut-on of the second harmonic
is reasonably well predicted; little can be said of the third harmonic because
of the very limited range in which it could be distinguished in the third-

octave band spectrum. A notable feature of the comparisons appears at the
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that the level of the interaction noise at these harmonics, if excited, will be
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fundamental blade passage frequency; not only are the predictions too high,
but the data show that the fundamental is propagating in the duct well before

the theory would predict, at least on the basis of rotor-stator interaction.

eSS A 128

From the present data one cannot tell whether the fundamental first cuts on

at about 1490 rpm, or whether it had been present before, but below the back-
ground level (see Fig. 26). In any event, this strongly suggests that another
noise generation mechanism besides rotor-stator interaction may be influencing

the data. This will be discussed further below.

The comparisons of theory with experimental data at the mean

; stator stagger angle of 37.2° are shown in Figs. 3la-d. Qualitatively, the

comparisons exhibit the same features as those for the other stator setting.

The predictions for the fourth and fifth harmonics are too low, though the

agreement at the higher rpms is not bad in the case of the fourth. The lower

harmonics are overestimated, though to a lesser degree than before. Again, N
the fundamental is detectable well before the theory indicates it should

propagate.

As noted in connection with the comparisons done under the
previous program,1 one plausible explanation for the poor agreement at the
higher harmonics is the assumed shape for the viscous wake profiles. At
present, the model uses a profile correlation which is based on the isolated
airfoil data of Silverstein, et 31.39 It was demonstrated in Ref. 1 that
alternate correlations of the same data would produce significant changes in
the theoretical SPL levels of the higher harmonics. This is basically because
the high harmonic content of the wake profiles, and hence the noise, is deter-
mined to a great extent by the rate at which the velocity defect approaches
zero near the edges of the wake, and this is difficult to define experimentally.
Thus, it may be that reliable predictions of viscous interaction noise in
the higher harmonics will have to await the development of means to predict
the wake structure with more precision.

In a practical sense, the inability to predict higher harmonic

| levels is of secondary interest. It is the fundamental, and perhaps second

62




§
t
5
%,,
s;
f

harmonic, which is most directly responsible for the noise problem at the higher
speeds at which aircraft engines operate. Here the theory consistently over-
estimates the noise levels. This cannot be explained on the basis of inade-

quate knowledge of the wake profile structure; as demonstrated in Ref. 1, the

S VM PR IROR e e«

lowest harmonics are insensitive to the particular choice of profile correla-
tion. They are, however, sensitive to the prediction of the wake centerline
velocity defect, i.e., the height of the wake profile. This also was correlated
on the basis of the isolated airfoil data in Ref. 39. More recent experimental
investigations have been accumulating data on the wake structure of both two-

40,41 and three-dimensional rotors.""43 The cascade data 5

dimensiocnal cascades
of Ref. 40 indicate that the decay of the wake velocity defect with distance
downstream of the trailing edge is slower than would be found behind an iso-
1 B

lated airfoil. On the other hand, Kerrebrock et 314 observed a faster rate

of decay in the cascade data when compared with the isolated airfoil case.

; - . 42,43 =
The studies done on three-dimensional rotor wakes ~’"° thus far have shown
that they decay more rapidly than the wakes of either cascades or isolated

airfoils.

Clearly, there is ample evidence to suggest that the present
theory may be inaccurately modeling the rotor wake structure. Improved cor-
relations with the present acoustic data would result if the centerline ve-
locity defect was weaker than predicted, and the wake profile shape was sharper
and narrower than that assumed. However, it is too early to say how generally
applicable the data of Refs. 40-43 are to other configurations. In particular,
the effects of such parameters as solidity, steady loading, and blade profile
all need to be quantified. Lacking this, better knowledge of the wake struc-
ture in the present annular cascade facility would require an extensive series
of measurements which were felt to be outside the scope of the present pro-
gram.

Another possible source of error in the theory is the unsteady

3

aerodynamic model. As pointed out earlier, Osborne's”” model does include

compressibility effects provided the Mach number and/or reduced frequency are
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were measured on the outer casing upstream of the rotor. In taking these data,

the fan system downstream of the annular cascade was turned off and the fan was

S0

not too high. However, when applied at the low speeds of the present experi-
ments, it reduces to the incompressible theory of Xemp and Sears.jJ’SJ The
flow is assumed to be two-dimensional, with each blade or vane behaving as

an isolated airfoil. For the high hub/tip ratio of the present experiments,
the two-dimensional assumption is not unreasonable. However, the solidity
ratio, defined as the ratio of chord length to tangential blade spacing, is
approximately 0.85 for the stator at mid-annulus. Thus the effects of inter-
ference from neighboring stator vanes may not be negligible. Both of these
questions, regarding the importance of three-dimensionality and blade-to-
blade interference, could be answered by the type of analvsis reported in
Section II, which is still under development. The best means of assessing
the aerodynamic model would be to make unsteady load measurements on the
stator vanes and see how they compared with predictions. This was also felt

to be outside the scope of the present work.

Finally, there is the question of why the fundamental blade
passage frequency cuts on earlier in the experiments than the theory would
indicate (Figs. 30a and 3la). This strongly suggests that noise is being
generated through mechanisms other than rotor-stator interaction. The most
likely possibility is that the rotor itself is interacting with a distortion
in the inlet flow, perhaps the wakes produced by the upstream support struts
shown in Fig. 14. Since the struts are streamlined and located about a foot
and a half ahead of the rotor, one would expect that their wakes would be

sufficiently diffuse by the time they reach it so as to have neglibible in-

tluence. Azimuthal surveys of the flow ahead of the rotor have been performed,

but only in the presence of distortion screens which were used to study the
o = it : s 31 < .
influence of distortion on rotating stall. Any strut generated distortion

would have been masked by the presence of the screens.

Thus it seemed the most expeditious way to test this hypothe-
sis was to remove the stator and see whether the isolated rotor still produced
significant tone noise. (In the absence of inflow distortion, it should not

radiate any noise at subsonic tip speeds.) When the rig was disassembled for
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mechanism to fire on the audio oscillator signal and then adjusting the oscillator

] 51

this purpose, it was discovered that the chain drive used to drive the rotor
had deteriorated and loosened considerably. Accordingly it was replaced, but
the new drive generated sufficiently higher background noise levels than the

old that further experiments on isolated rotor noise were not possible.

D. CONCLUSIONS

Qur earlier comparisons of the rotor-stator interaction noise theory
, with experimental data taken in Calspan's annular cascade facility had shown
that the theory consistently underestimated SPL at the fourth and fifth
harmonics of blade passage frequenc,\'.1 This was felt to be a rather severe
test of the theory, as the higher harmonics were shown to be quite sensitive
to details of the rotor blade wake profiles. However, power limitations in
the rig at that time prevented operating at high enough rpm's to allow the
lower harmonics to propagate. The main goal of this portion of the current
contract was to provide, with a newly re-powered rig, comparisons between
theory and data at the fundamental and first few harmonics. These comparisons
have been made, and show that the theory consistently overestimates the noise
in the fundamental and second harmonic; experimental data at the third har-
monic was also lower than the theory, but was limited to too few points for
any general conclusion to be drawn. Interaction of the stator with the viscous
L wakes shed by the rotor is predicted by the model to be the predominant noise
generation mechanism; potential interactions between blade rows were found

to be negligible.

The theoretical model was required to predict the viscous interaction
noise based only on turning and loss performance data, since this is the type
of information the designer is likely to have available. The overall model
is thus a composite of three major elements: a model of the viscous wake

structure; an aerodynamic model to predict the unsteady response of the

downstream row to the wakes; an acoustic model to predict the resulting radi-
ation. At present we know with certainty only that the end results do not
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within the boundary layer on the outer wall and by

the free-wheeling fan down-
stream of the annular cascade test section. Figs. 17b and 17¢ show the sharp
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correlate well with the acoustic measurements. We strongly suspect that the
weakest links in the model are the viscous wake modeling, and perhaps the
é unsteady aerodynamic model, for the reasons discussed above. Conclusive
answers to these questions can be obtained only by performing extensive
measurements of both the rotor wake structure and the unsteady loads produced
on the stator vanes; however, such a program was well outside the scope of
present effort.

Another surprising feature in the comparisons is that the fundamental
blade passage frequency first appears at a lower rpm than predicted by the
theory. This suggests that a noise generation mechanism other than rotor-
stator interaction may have heavily influenced the data. One possibility is

that the rotor itself may be interacting with a distortion in the flow, such

as wakes from the upstream support struts, or perhaps a distortion in the

inlet flow itself. No surveys have been made as vet of the flow uniformity

o

ahead of the rotor, and attempts at measuring the noise output of the rotor

with the stator removed were thwarted by high background levels from a newly

: installed drive mechanism. It is felt that one or both of these measurements
should be made before conducting any further experiments on rotor-stator
interaction in the annular cascade.
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is shown in Fig. 18a.

In this case, the relative background

level for the third-octave band centered at 1250 H: is estimated
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SECTION IV ]

SUMMARY

In Section I, a method is presented for computing the steady loading
on a three-dimensional annular blade row in compressible flow, given the blade

camber line. A kernel-function procedure is used to solve the linearized in-

tegral equation relating the unknown loading to the camber line slope. The
greatest advantage of the solution procedure presented here is that it allows

analytical expressions to be derived for both the spanwise and chordwise in-

e

tegrals which are required. It also allows the various aerodynamic and per-

et

formance parameters of the rotor to be expressed as simple algebraic functions

of the loading expansion coefficients.

N AGER

Comparisons are presented between the predictions of the present 3
tneory and those of two-dimensional strip theory, as well as with the results
of an inverse three-dimensional analysis. The three-dimensional and strip

theories show consistently good agreement at mid-annulus, but the taree-

t

dimensional theory predicts loadings which are significantly higher near the
hub and lower near the tip than the strip theory, thus giving much lower
radial variations. Such behavior can be attributed to the induced angle of
attack distribution generated by the trailing vortex wakes, which is not
accounted for in strip theory; this smoothing appears to be the principle

effect of three-dimensionality, at least for subsonic relative Mach numbers.

When coupled with the analogous treatment of the disturbance flow-
field produced by blade thickness, the loading analysis presented here should
provide an efficient means of studying three-dimensional effects in turbo-
machinery rows. The program should prove particularly advantageous for
evaluating alternate blade camber lines at a given operating condition; thus,
it could serve to narrow down the number of candidate blade profiles before
going to a finite-difference solution of the full nonlinear equations. It
could also prove useful in providing better initial conditions to a difference

scheme, allowing the latter to converge in fewer iterations.

"
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When two third-octave bands responded
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In Section II, the linearized analysis is extended to the study of
unsteady flow through a rotor, such as might be produced by inflow distortion
or blade vibrations. An integral equation is derived which relates the un-

L known loading to the prescribed variations in normal velocity at the blade
surfaces. Terms can be identified in the integral equation which represent
the blade wakes. These include elements of both trailing vorticity, produced
by spanwise loading gradients, and shed vorticity, which results from the
temporal fluctuations in loading. Also included are terms which represent
waves propagating unattenuated away from the blade row in both directions.
This acoustic radiation field would be predicted as a by-product of the solu-
tion, with regard to both total acoustic energy flux, and its distribution
among the various propagating duct modes. Though somewhat more complicated
than the analogous steady flow equation, the form of the required integrations
suggests that it can be solved by a suitable extension of the procedure de-

veloped in Section I.

Section III presents comparisons between a theoretical model of
rotor-stator interaction noise, developed under a previous program, and a
current series of acoustic measurements made in an annular cascade facility.
Inputs required by the theory are the steady loading on both rows, which is
used to predict the potential interactions, and the drag coefficient of the
upstream row, which is used to infer the wake velocity defect for the viscous
interaction. These were inferred from experimental measurements of the cir-
cumferentially-averaged turning performance and total pressure losses,

respectively, across the blade rows.

Theoretical and experimental Sound Pressure Levels at one point in
the duct upstream of a rotor-stator pair were compared from the fundamental
blade passage frequency up through the fifth harmonic. The calculations in-
3 dicate that the viscous wake interaction is the dominant noise generation
mechanism. The theory overestimates the noise in the fundamental and second
harmonic, while its predictions are too low for the fourth and fifth. The

E most likely sources of error in the theory are felt to be in the modeling of
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the rotor viscous wakes and the unsteady aerodynamic response of the down-
stream stator vanes; the wake model is based on isolated airfoil data, while
the aerodynamic analysis neglects the influence of neighboring vanes in the
stator. Detailed wake survey and unsteady load measurements against which

to test this hypothesis were outside the scope of the present effort. It
also appeared that the experimental data may have been heavily influenced

by noise generation mechanisms other than those considered in the rotor-
stator interaction theory, including the possibility of the rotor interacting

with the wakes shed by upstream support struts.




Appendix A.

EQUIVALENCE OF THE PRESSURE DIPOLE AND HORSESHOE VORTEX
REPRESENTATIONS OF THE STEADY LOADING ON AN ANNULAR BLADE RQW.

The pressure dipole representation of the rotor used in the steady
lifting-surface calculations can be shown to be equivalent to the vortex
representation used by Okurounmu and McCunes'7. In order to demonstrate this,
the present dipole representation is reinterpreted as a vortex representation,
to which it must be equivalent if both are valid. The resulting vortex repre-

sentation is then shown to be the same as that of Okurounmu and McCune.

First, the perturbation velocity potential of a lifting rotor is

written in terms of the perturbation pressure, - , as follows:

Bupla e

CP:_./w Pu U

Writing the perturbation pressure as the superposition of dipole solutions

dzl (:’\-1)

and then interchanging the order of integration gives

Zz
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where Sg means all blade surfaces .
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Introducing the bound vorticity, ¥ , which is related to the blade loading
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(A-4)
The sign of the vorticity is defined opposite to that in the main body of the

report to be consistent with Okurounmu and McCune. Now it can be shown that

Z ©
/pD<ZI7Z7r;za,ro’;o)d‘z’=/'P (2341"';201’4,;"0)0120,

- 00 E‘

Also, the perturbation pressure and potential fields both must satisfy the

same partial differential equation and boundary conditions (see Eqns. (55)

and (56) of Ref. 1). Thus, it follows that the solution for a pressure dipole,
o » is mathematically the same as that for a potential doublet, 4L g

although the two represent physically different flows. Analogous to the

situation in wing theory (Ref. 16, Chapt. 5), we can then derive the potential

due to an elementary horsehoe vortex as:

wr, / 4
9, = 1/1+(Ur)2/‘d’o(z,;,r; 2,5 8,0 r0) dE (g
Zo

Then Eqn. (A-4) becomes

&‘/s‘“r“z")d’adse (A-6)

This equation expresses the potential due to a lifting rotor as the super-
position of elementary horseshoe vortices. Each vortex has an infinitesimally
long, radially oriented bound element located at Z, , r, and a pair of

trailing vortex filaments lying along the helical undisturbed streamlines.
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In Ref. 5, Okurounmu and McCune developed the solution for equally
spaced, radially oriented vortex lines (and their associated trailing vortex
wakes) which span the annulus. To show that their solution is equivalent to
that based on a dipole formulation, we proceed as follows. First, we sub-
stitute our pressure dipole solution, Eqn. (91) of Ref. 1, for (, 1in
Eqn. (A-5). The required integration has already been performed in Ref. 1,
and is quoted there as Eqn. (100a). This elementary horseshoe vortex
solution can then be used in (A-6) to construct the potential field due to

B radially-oriented line vortices whose strength, M , varies with span:

r

8-1 T :
2rr
C?l" = Z (—'("‘o) d’, ((.’;123 r‘a’_B1 ) zo)dra (A-7)
=0 r ¢ /
3 N
Carrying out the required substitutions and the sum over 3 , we obtain: i
r
{ w8 2 “
PRI s 2 il i Sty " H(z-
T f‘H
8 ® ® (mBg (B H(z2-a,)
+ — T Z, R (re -
2 2 o mBk ( 8)2 2
anpr, n;oao K=t [ ﬂﬁT i Am&k:'
re 1+ (pu’f‘. 2
U
i / RmBk (0:)/—'("0)[ Wwro\2 } rod' S
ry S
(8
5 = o= Riguieie: o
v 4+ 3%r2 z Z;E, WA, gk [(mB)* e
/ " = - 2 a4
i ( U )[p‘i +/\"“°“]
"
‘ tm8 w WAL 8K .
| 7“-9“?’2'%']/ R (5 'Cr,
rH
. (mB)° _wr, [(mBiM® 2 te (SR
/5‘(.“_’.’:&) U At +)‘m8k] = W, emB A sk
v U
[aH(z-z,) -7:[ } dr,
(A-8)




This solution will now be shown to be equivalent to that derived by
Okurounmu and McCune5 for the same problem, though they worked from a different
point of view. When notational differences are accounted for the m=o0 terms
in the above expression are easily shown to be identical to those in Eqn. (8)
of Ref. 5. However, the key step in demonstrating that the two solutions are
equivalent is in showing that the terms representing the trailing vortex wakes
are the same. These are the m#0 terms in (?r which appear in the second
and third lines of Eqn. (A-8); they will be denoted by &, for convenience.

Using Eqn. (2a), the wake potential dw may be written:

r

8 L o
G, = 2 L Rk (@) Ropk (4;)

T =1 k=1
rH

(e 1+ (#Fe)°
| /1

g E } r.a P,
7

e (mBzg)

¢
mB ")

i

B e e R

(A-9)

We now employ the addition and subtraction manipulation used in Section IV-C
of Ref. 1 to demonstrate that the expressions for the velocity components

contained the correct discontinuities. Then &u, becomes

i CnBT) T
i"‘;_’é“_i Rmek(a‘)/ PLey Rog (R rodr,
r

H
sun (mBZ) =2
—"_"g- {_: Rmsk(o:) Pmek(f)

=1




E The sum over k in the first line is the Fourier-Bessel expansion for

['(r) ; the sum over m ¥ields the sawtooth function & defined by:

-_gz

: ¢ e m8 (A-11)
: (24 +1)7m 21ty 2w . :
i il Sapbere el Ry R R LT
: < s & 27T
Note that éj has a discontinuity of ( - = ) as one crosses a blade
surface, g = g_:_;_z » in the positive & direction. By substituting from

Bessel's equation, the second line of (A-10) can be written in terms of de-
rivatives of the series S (r,r,) defined by:

Rnk (Knk o) Q'\k (Knk 0‘,)

e R 1

Sn<'ﬂ' lg) = E
K

The wake potential then reads

. rr
B . B ™ 2 (mBg) r i d.smg de

(A-13)

-

The series defined in (A-12) has been summed by Salaunb in terms
of modified Bessel functions using the following technique. If we differen-

tiate the series twice with respect to ¢~ , and use the Fourier-Bessel expan-
sion for & (¢-a,),

& - ay) -
= L R W@IR, (o) n#o (A-14)

] K a1




then the following differential equation is obtained for S,

1 d oS, o2 2 §(a,-an,)
o 0., S N = L lal o
( i oLa;) [(r,,) k ’] >n F <, (A-15)

where the notation ¢, =nwr/U has been introduced. (Note that the addition
and subtraction manipulation used in Section IV-C of Ref. 1 is equivalent to
substituting for S, from Eqn. (A-15)). This equation is solved subject to

the hard-wall boundary conditions, i.e. that oS, /a3 vanish at the
inner and outer duct walls J, = a‘,..f nwr; /U and O‘,,,, = nwr./U. Moreover,
Sn is required to be continuous at 0, = 0n, and dS,, /do-h must satisfy the

following jump condition there:
[ cLS.‘) (cLS,,) ] Poace)
doa/g* doy, & Tn

o °

This was derived by integrating Eqn. (A-15) from Tn, - & to Tn, +&

- (A-16)

The modified Bessel functions I,(¢3,) and K, (g},) are linearly
independent solutions of the homogeneous equation for S, . For O, < @,
o

assume

Sn (0q s Ta,) = €, <0—n,) I, (q) + C(dhn,) Ka(0n)
(A-17a)

while for &0, > d‘no set

Sp (0, 0n,) = Cy(03,) 1,(q) + C (Ty,) KL (63,)
(A-17b)

The coefficients C, thru C4 are chosen so as to satisfy the boundary

conditions cited above, and the results are:
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i
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where . : } y (A-18)
Z 1,0 Kty ) = I A00n) KalThs)

and primes denote differentiation with respect to the argument.

Returning to Eqn. (A-13), if we integrate by parts once in the
second term, make use of the fact that d S,.,g /dr, vanishes at the hub and
tip, and then substitute for S,,g from the results given in (A-17) and
(A-18), we obtain for the wake potential:

8 8 © g (mBG)
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After reorganizing the ranges of the integrals above, the expression in braces

- 4 5 o < =
can be shown to be ~-r. X . g , where X,.g is the wake function defined 1

—

(2 +T)Tl
in Eqn. (5) of Ref. 5. (Okurounmu and McCune placed their blades at J = —J§~——

<

=214 - : ; m . :
rather than —?;L , which results in an extra factor of (-1) in their
result.) The above representation for the wake potential is thus equivalent

to that given by Okurounmu and McCunes in Eqmniee (4,

It remains to be shown that the last four lines in Eqn. (A-8),
which contain the exponential factors in ( Z - 2, ), are the same as the
corresponding ones in the line vortex solution of Okurounmu and McCune. The
equivalence of the m=0 terms is straightforward, as noted earlier. For
m#o , the factors in the braces in Eqn. (A-8) are first rearranged, using
the same addition and subtraction manipulation referred to above. Then, the

following two radial integrals which arise,

1

/ () R gk (0,) 0, d o,
/)

Kmak \2
/’ B iaiet ot b g AP
AEESEESY

can be identified as the coefficients of K, gk () in the Fourier-Bessel

expansions of the bound vorticity, [7(s), and the wake functions, L vty ;
respectively. The latter follows from the above demonstration that the Kk
series in the second term of Eqn. (A-10) jis indeed proportional to X, g
Okurounmu and McCune refer to the coefficients defined by the above integrals f
as [,,gx and h,.ex » respectively. Once these identifications are made, :
the equivalence between these terms and their counterparts in Eqn. (8) of

Ref. 5 1is evident.

Thus, we have been able to show that the singularity solutions used
to represent a lifting rotor in the present work can be put in the same form
as those used by Okurounmu and McCuneS. On this basis, we have concluded that
the lifting-surface formulations based on the pressure dipole and vortex rep-

resentations, though in markedly different forms, are indeed equivalent.
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Appendix B
EVALUATION OF RADIAL INTEGRALS

This appendix presents the analytical evaluation of the set of

al integrals defined by:

'
-

3 Y :
Ink */0' '?nk\/’(nkf)d-f (B-1)
A

where y £ K and n=mB are all integers. The R, are linear combinations of

the J,. and Y,, Bessel functions:

Tl Kk ) = S Ya C K )
Mo (B-2)

R nk( "(nk d‘)

where d,,, and N, are phase and normalization factors, respectively, which
vary from mode to mode, but are independent of ¢~ . These functions are
discussed at length in Refs. 2-4, and 15. The procedure used in evaluating
the eigenvalues and eigenfunctions for large values of n is described in
Ref. 22.

The above integral can be evaluated by using the following indefinite
poe

integral given by Watson: >

/ {’_{,(;')d;" = (4+n-0F BES,, A,0)- § 23, 8)35,.(5) (B-3)

where z_ represents either J, or Y, and the Séﬂ,are Lommel's functions.

Substitution of Eqns. (B-2) and (B-3) into (B-1) yields:

¥4 e e 3t ,
'L:k = [T{:{(j +n '7)r?nk&f(ﬂkd‘)sa",'n_,(/‘\/nkd')
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This gives
pt o (Eomliudl Lo iie e e e f)p '
~nk L K:u L“f 4=t =1 nk Ao an\' nK "-'SA, (B-4)
Watson™> also gives the following recursion formula satisfied by Lommel's
function:
' =3 . o n -
53""(;/,(&?n")sa'-,‘n_'({) ‘3:5:',,(;)
which allows Eqn. (B-4) to be put in its simplest form:
3 ; ’ : 1
-3 [f’?nk('(nkd—) SLH(KARO.)]
- = -5
nk K.:g % (B )

This can be simplified by making use of the Bessel function recursion rela-

tion,
Z, () = EZ. () + ;f—i.@')

where a prime indicates differentiation with respect to the argument. Also,

by definition:

Since R, at the hub and tip will have already been evaluated as

part of determining K, , the only new quantities introduced above are the
Lommel functions. They may be easily evaluated using the formulae cited by
Watson;zssincethese are all given for Séﬂ, rather than its derivative, in
practice Eqn. (B-4) was used rather than (B-5). The calculated values were
checked by recognizing that I:k as defined in Eqn. (B-1) is just the k th co-

efficient in the Fourier-Bessel expansion of ocd’ 1 w8
J.?." 2 ; I‘ e R
&, Tk Rk (K pie T) (B-6)

Satisfaction of Eqn. (B-6) was verified for several values of # » n and ¢~.
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Appendix C
EVALUATION OF AXIAL INTEGRALS

This appendix presents the analytical evaluation of the axial in-

tegrals defined by Eqn. (14). C'(x) is easily evaluated after making the
substitution

X, = cnQ, X = e Q C
The results are:

} T=-9 + ‘:""Q
c<z)-j’(rr-¢)/a + dawm 2d /2

L2 2 (C-2)

RS Y s .
L&t @l ~mum(u-2)@/2(i-2) [>52

The derivation of the results for CZ;Bk and S:ngk is rather lengthy,

although the procedure is straightforward once a few key relations are given.

Only an outline of the principal steps is given below, followed by the final
results:

1) The cosines and sines appearing in the integrands of Egqn. (14)

are written as either the real or imaginary parts of complex exponentials,

and the region of integration is split in two, according to whether G, S
greater or less than X .

2)

Use is made again of the substitution in Eqn. (C-1); this reduces
the integrands to trigonometric forms involving only sines and cosines of

multiples of ¢, . For ¢ >1 , set

o @, wim ()@, = g lem (208 - emig]

2 e,
3) Each integrand will contain an exponential of the form &

where Z is in general complex. It takes on the values Z = *a-(b where
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Q? 4‘<Jl< //e‘ m =0
a = ﬁ
L ™8 - smak '///3 ™m >0 (C-32)
i o m =0
L Sy 5 il -
{ mB8d.N.//3 m >0 (C-3b)

The exponential is expanded in a simple cosine series using Eqn. (9.6.34) of
Ref. 24:

®
n
)
“’\
I
p—g
4
n
(]
H
3
>
)
§
3
53
==
1
$

Here I,(2) is the modified Bessel function of the first kind of integer order
n . Noting that /I (&) = [J (2)] , where J,(& is the regular Bessel

function, and that J,(2) decays exponentially with n once n 2 | Zl (see,

3
e.g., Michels,”™ ) the series in Eqn. (C-4) can be expected to converge rapidly
once n exceeds this value.

4) The integrand will now contain a series of terms, each of which
involves at worst the product of two cosines. Since we know the series con-

verge as discussed in 3), the integration over 4% may be carried out term-by-
term.

5) The series of integrated terms which result from 4) will have dif-
ferent arguments for J, , depending on whether the series arose from the

integral for,z° greater or less than x . However, the two are related through

I,f-a-i6] = ¢-n"I ca-ib) (C-5)

where the asterisk denotes the complex conjugate. This allows most of the

terms in the series arising from the two integrals to be combined in a single
series, considerably simplifying the results.




The final results are given below, where the symbols He and <im denote

real and imaginary parts, respectively:

-2X _ . -
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S RoX e, - Am 02wl L,

‘ . T -aX ~ = &
ma(X) = e 10, 5 Ty #01 =8 ,)
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tiea =

| S|

Umi D m(i-2) )
[

|
]
' * ,- !
i (e=2a) i

L’:,o-:J\. aX 2ok J,.,:o - Wa.zmb,z @:a]

4 )";',(_')n (N0 am(ne) D almin-ie2) 3 amnei-2¢7
:-,' 5 Cn-¢) ) (ﬂv-é) (n =L +2) Ln+c-2) -]
coch ax ‘L : e smbeaz) [n eve
- [I : e Co2 OZd L,y -{ T Aambx &IJ a)
Lobh &% cosh o J lnooof (C-6d)

where now 'n * o3 0% edmmly + om0z Rel,-

In the above expressions cSL3 is the Kronecker delta symbol, defined as one

when L=3 , and zero otherwise. It must also be remembered in evaluating the
umn® é .
n
from the above results by setting b=0 and recognizing that this implies

sums over n that _Lm The special case m =0 can be obtained
-0

the Bessel functions will be purely real.

At first glance, the evaluation of Eqn. (C-6) might appear even
more time-consuming than a more straightforward numerical integration. But,
in addition to the obvious advantage that they are ''exact" to any desired
accuracy, depending on how many terms one retains in the sum over n, there
is one overriding point in their favor. That is, whereas a numerical integra-
tion scheme must repeat every step of the calculation for all combinations
of m, k , . and 2, the above expressions conveniently separate the influence
of each of these indices. For example, once the Xy are chosen, the values
of ® and all the sines can be determined; also, functions such as cosh ax
need to be computed only NM x NK x NL times. Finally, note that the argument

of the complex Bessel function I, depends only on the two indices m and k .
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Since this argument is independent of the order, n , of the Bessel functions,
one can make use of a very efficient algorithm based on the recursion relation
(Ref. 26) to calculate all orders of the function at once, for a given m and

K. This part of the calculation need only be performed NM x NK times.

Results computed from Eqn. (C-6) were compared against those obtained
using the numerical integration scheme of O'Hara and Smithzf for several
hundred representative integrals. The analytical evaluation proved much
faster, and agreement within the 1% accuracy required of the quadrature calcu-
lation was exhibited in the great majority of cases. However, for the higher
values of m and < , the analvtical evaluation gave results which were grossly
in error. This was traced to the fact that for large values of a and cee @,
negative, the left side of Eqn. (C-4) decays exponentially with &, while
each term in the series on the right side is growing exponentiall,\'.‘:J This
leads to similar behavior in Eqn. (C-6), resulting in excessive round-off
error. The calculations were done on an IBM 360/65 in double precision arith-
metic, which can be expected to vield about 16 significant digits. For these
conditions it was found that round-off error became a significant problem when
a 2 11, in which case the program automatically reverts to the numerical
integration method cited above. Unfortunately, when @ is large b is also, and
the resulting highly oscillatory integrand again leads to a time-consuming
calculation. Clearly an asymptotic evaluation of the integrals in this limit

would be preferable; work along these lines has been initiated.

For ( >2 , there is vet a further means of streamlining the axial
integral evaluations. This is based on the following easily proven symmetry
properties:

. - 2, \
C (%) » T/Q - C(x) L2 (C-7a)

¢ R A,
C (%) =3 (-1) & X b >é

K
m Bk

.

m8k

C L (%) » =1

W
o

-

(%) 22, m

(C-7¢)
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[f the chordwise collocation points, Xp , are symmetrically disposed about

the mid-chord, X =, then use of the above relations can cut computing time

and storage almost in half.
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Figure 1 BLADE ROW AND DUCT GEOMETRY
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Figure 2 CAMBER LINE GEOMETRY IN BLADE-FIXED COORDINATES
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ROTOR STAGGER ANGLE - 40.0 deg
[ STATOR STAGGER ANGLE = 37.2 deg

. REFERENCE
E OSCILLATOR
SIGNAL

t NOISE
SIGNAL

a) ROTOR RPM = 1695.5 OSCILLATOR FREQUENCY = 1300 Hz
CALCULATED BLADE PASSAGE FREQUENCY = 1300 Hz

REFERENCE
OSCILLATOR
SIGNAL

NOISE
SIGNAL

b) ROTOR RPM = 1710.5 OSCILLATOR FREQUENCY = 1312 Mz
CALCULATED BLADE PASSAGE FREQUENCY = 1311 Hz

Figure 16 OSCILLOSCOPE RECORDS OF NOISE SIGNAL FROM ROTOR-STATOR INTERACTION |
{
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113




SOUND PRESSURE LEVEL CORRECTED FOR BACKGROUND,

= = o
= S -

dB re 2 x 104 dynes/em?

g

90

{TBACKGROUND LEVEL/! 1 ;

‘
t
| } } } ! /! | ! { \
S Bkl vtk suts veo e St icobe: Shpey ks etk W Reax S
‘ ! ' ' 3 \ i \ H \ ' \ i
1

-

Ehl okt d ]

Figure 23

1550 1600 1650 1700 1750 .1800
ROTOR RPM
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